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Preface

The Bergman kernel and metric have been a seminal part of geometric analysis
and partial differential equations since their invention by Stefan Bergman in 1922.
Applications to holomorphic mappings, to function theory, to partial differential
equations, and to differential geometry have kept the techniques plugged into the
mainstream of mathematics for 90 years.

The Bergman kernel is based on a very simple idea: that the square-integrable
holomorphic functions on a bounded domain in that complex space form a Hilbert
space. Moreover, a simple formal argument shows that Hilbert space possesses a
so-called reproducing kernel. This is an integration kernel which reproduces each
element of the space. The kernel has wonderful invariance properties, leading to
the Bergman metric. The Bergman kernel and metric have developed into powerful
tools for function theory, analysis, differential geometry, and partial differential
equations. The purpose of this book is to exposit this theory (particularly in the
context of several complex variables), examine its key features, and bring the reader
up to speed with some of the latest developments.

Bergman wrote several books about his kernel and contributed mightily to its
development. The idea caught on widely, and the kernel became a standard device
in the field. The Bergman metric was the first-ever Kähler metric, and that in
turn spawned the vital subject of complex differential geometry. Ahlfors (in one
variable), Chern (in several variables), Greene–Wu, and many others played a
decisive role in this development.

Bergman’s ideas received a major boost in the 1970s when Charles Fefferman
did his Fields Medal-winning work on the boundary behavior of biholomorphic
mappings. The key device in his analysis was the Bergman kernel and metric.
Since then, a myriad of workers, from Bell and Ligocka to Webster to Greene–
Krantz, Krantz–Li, Kim–Krantz, Isaev–Krantz, and many others, have developed
and extended Bergman’s theory. It is now part of the lingua franca of complex
analysis, and the technique of reproducing kernels which it has spawned is part
of every analyst’s toolkit.

Fefferman’s work inspired many others to examine the utility of the Bergman
theory in the study of biholomorphic mappings. Bell’s condition R, formulated
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viii Preface

in terms of regularity properties of the Bergman projection, has proved to be
an influential and powerful weapon in the subject. In turn, condition R can
be formulated in terms of the regularity theory of subelliptic partial differential
equations, and this connection has had a key influence on the directions of research.

The Bergman metric was the first “universal” (in the sense that it can be
constructed on virtually any domain) example of a metric that is invariant under
biholomorphic mappings. [The Poincaré metric was of course the primordial
example on the disc.] Today there are the Kobayashi–Royden metric, the Sibony
metric, the Carathéodory metric, and many others. This is a useful tool in geometric
analysis and function theory.

The connections of the Bergman kernel with partial differential equations,
especially the extremal properties of the kernel and metric, are profound. Bergman
himself explored applications of his theory to elliptic partial differential equations.
Today we see the Bergman kernel as inextricably linked with the @-Neumann
problem. This link played a vital role in Fefferman’s work and later proved
crucial to Greene–Krantz and many of the other workers in the subject. Certainly
Donald Spencer and J. J. Kohn were the pioneers of this symbiosis. Today the
interaction is prospering. Another development is that the Bergman theory enjoys
connections with the Monge–Ampère equation. That nonlinear partial differential
equation contains important information about biholomorphic mappings and about
the construction of geometries.

Connections with harmonic analysis are another exciting, and relatively new,
aspect of the Bergman paradigm. Coifman–Rochberg–Weiss used the Bergman
kernel in their proof of the H1/BMO duality theorem on the ball, and Krantz–
Li exploited it further in their study on strictly pseudoconvex domains. Many of
the natural artifacts of harmonic analysis—including approach regions for Fatou
theorems—are most propitiously formulated in terms of Bergman geometry or the
boundary asymptotics of the kernel. The Bergman kernel is now a standard artifact
of the harmonic analysis of several complex variables.

This text will in fact be a thoroughgoing treatment of all the basic analytic and
geometric aspects of Bergman’s theory. This will include

• Definitions of the Bergman kernel
• Definition and basic properties of the Bergman metric
• Calculation of the Bergman kernel and metric
• Invariance properties of the kernel and metric
• Boundary asymptotics of the kernel and metric
• Asymptotic expansions for the Bergman kernel
• Applications to function theory
• Applications to geometry
• Applications to partial differential equations
• Interpretations in terms of functional analysis
• The geometry of the Bergman metric
• Curvature of the Bergman metric
• The Bergman kernel and metric on manifolds
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There are a few recent treatises on the Bergman kernel, notably those by
Hedenmalm–Korenblum–Zhu and Duren–Schuster. But these books concentrate
on the one-variable theory; they are also oriented towards the functional analysis
aspects of the Bergman kernel. Our focus instead is the geometry of several complex
variables and the contexts of real analysis, complex analysis, harmonic analysis,
and differential geometry. This puts Bergman’s ideas into a much broader arena
and provides many more opportunities for applications and illustrations. We will
certainly touch on the functional analysis properties of the Bergman projection, but
these will not be our main focus. We shall also cover selected topics of the one
complex variable theory. There is little overlap between this book and the two books
cited above.

We would also be remiss not to mention the book of Ma and Marinescu on the
Kähler geometry aspects of the Bergman theory. Certainly the Bergman metric was
the very first Kähler metric, and this in turn has spawned the active and fruitful area
of multivariable complex differential geometry. Various parts of the present book
touch on this Kähler theory.

Lurking in the background behind Fefferman’s biholomorphic mapping theorem
were Bergman representative coordinates—yet another outgrowth of the Bergman
kernel and metric. This is a much-underappreciated aspect of the theory and one
that we shall treat in detail in the text. In fact there are many aspects of the Bergman
theory that tend only to be known to experts and are not readily accessible in the
literature. We intend to treat many of those. Several of the topics in this text appear
here for the first time in book form.

We intend this to be a book for students as well as seasoned researchers. All
needed background will be provided. The reader is only assumed to have had a
solid course in complex variables and some basic background in real and functional
analysis. A little exposure to geometry will be helpful, but is not a requirement.
There are many illustrative examples and some useful figures. The book abounds
with useful and instructive calculations, many of which cannot be found elsewhere.
Every chapter ends with a selection of exercises, which should serve to help the
reader get more directly involved in the subject matter. It will cause him/her to
consult the literature, to calculate, and to learn by doing.

The book will help the novice reader to see how analysis is used in practice and
how it can be evolved into a seminal tool for research. It is important for the student
to see fundamental mathematics used in vitro in order to understand how research
develops and grows.

It is a pleasure to thank E. M. Stein for introducing me to the Bergman kernel
and Robert E. Greene for teaching me the geometric aspects. I have had many
collaborators in my study of the kernel, and I offer them all my gratitude. I thank
my editor, Elizabeth Loew, for her constant enthusiasm and support. And I thank the
several referees for this book, who contributed a wealth of ideas and information.

St. Louis, MO, USA Steven G. Krantz
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Chapter 1
Introductory Ideas

In the early days of functional analysis—the early twentieth century—people did not
yet know what a Banach space was nor a Hilbert space. They frequently studied a
particular complete, infinite-dimensional space from a more abstract point of view.
The most common space to be studied in this regard was of course L2. It was when
Stefan Bergman took a course from Erhard Schmidt on L2 of the unit interval I that
he conceived of the idea of the Bergman space of square-integrable holomorphic
functions on the unit disc D. And the rest is history.

It is important for the Bergman theory that his space of holomorphic functions
has an inner product structure and that it is complete. The first of these properties
follows from the fact that it is a subspace of L2; the second follows from a
fundamental inequality that we shall consider in the next section.

1.1 The Bergman Kernel

It is difficult to create an explicit integral formula, with holomorphic reproducing
kernel, for holomorphic functions on an arbitrary domain in C

n.1 Classical studies
which perform such constructions tend to concentrate on domains having a great
deal of symmetry (see, for instance, [HUA]). We now examine one of several
non-constructive approaches to this problem. This circle of ideas, due to Bergman
[BER1] and to Szegő [SZE] (some of the ideas presented here were anticipated by
the thesis of Bochner [BOC1]), will later be seen to have profound applications to
the boundary regularity of holomorphic mappings.

Bungart [BUN] and Gleason [GLE] have shown that any bounded domain in C
n

will have a reproducing kernel for holomorphic functions such that the kernel itself
is holomorphic in the free variable. In other words, the formula has the form

1Here a domain is a connected, open set.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 1,
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2 1 Introductory Ideas

f .z/ D
Z
�

f .�/K.z; �/ dV.�/;

and K is holomorphic in the z variable. Of course Bungart’s and Gleason’s proofs
are highly nonconstructive, and one can say almost nothing about the actual form
of the kernel K. The venerable Bochner–Martinelli kernel is easily constructed on
any bounded domain with reasonable boundary (just as an application of Stokes’s
theorem) and the kernel is explicit—just like the Cauchy kernel in one complex
variable. Also the kernel is the same for every domain. But the Bochner–Martinelli
kernel is definitely not holomorphic in the free variable. On the other hand, Henkin
[HEN], Kerzman [KER1], E. Ramirez [RAMI], and Grauert–Lieb [GRL] have given
very explicit constructions of reproducing kernels on strictly pseudoconvex domains
(see the definition below). And their kernels are holomorphic in the z variable. This
matter is treated in [KRA1, Chap. 10].

In fact this last described result was considered to be quite a dramatic advance.
For Henkin, Kerzman, Ramirez, and Grauert–Lieb provided us with a fairly explicit
kernel, with an explicit and measurable singularity, that can not only reproduce
but also create holomorphic functions. Such a kernel is very much like the Cauchy
kernel in one complex variable. Thus at least on strictly pseudoconvex domains, we
can perform many of the activities to which we are accustomed from the function
theory of one complex variable. We can get formulas for derivatives of holomorphic
functions, we can analyze power series, we can consider an analogue of the Cauchy
transform, and (perhaps most importantly) we can write down solution operators for
the @ problem. People were optimistic that these new integral formulas would give
a shot in the arm to the theory of function algebras—that they would now be able to
study H1.�/ and A.�/ on a variety of domains in C

n (see [GAM, Chap. II, IV]
for the role model in C

1). But this turned out to be too difficult.
The Bergman kernel is a canonical kernel that can be defined on any bounded

domain. It has wonderful invariance properties and is a powerful tool for geometry
and analysis. But it is difficult to calculate explicitly.

In this section we will see some of the invariance properties of the Bergman
kernel. This will lead in later sections to the definition of the Bergman metric (in
which all biholomorphic mappings become isometries) and to such other canon-
ical constructions as representative coordinates. The Bergman kernel has certain
extremal properties that make it a powerful tool in the theory of partial differential
equations (see Bergman and Schiffer [BES]). Also the form of the singularity of the
Bergman kernel (calculable for some interesting classes of domains) explains many
phenomena of the function theory of several complex variables.

Let � � Cn be a bounded domain (it is possible, but often tricky, to treat
unbounded domains as well). Here a domain is a connected, open set. If the domain
is smoothly bounded, then we may think of it as specified by a defining function:

� D fz 2 C
n W �.z/ < 0g :
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It is customary to require that r� ¤ 0 on @�. One can demonstrate the existence of
a definiting function by using the implicit function theorem. See [KRPA2] for the
latter and [KRA1] for a detailed consideration of defining functions.

Given a domain � as described in the last paragraph and a point P 2 @�, we
say that w is a complex tangent vector at P and write w 2 T P .@�/ if

nX
jD1

@�

@zj
.P /wj D 0 :

The point P is said to be strongly pseudoconvex if

nX
j;kD1

@2�

@zj @zk
.P /wjwk > 0

for 0 ¤ w 2 TP .@�/. In fact a little elementary analysis shows that we can write
the defining property of strong pseudoconvexity as

nX
j;kD1

@2�

@zj @zk
.P /wjwk � C jwj2

and make the estimate uniform when P ranges over a compact, strongly pseudocon-
vex boundary neighborhood of �. Again, the book [KRA1, Chap. 3] has extensive
discussion of the notion of strong pseudoconvexity.

Now let us return to the Bergman theory. Let dV denote the Lebesgue volume
measure on �. Define the Bergman space

A2.�/ D
�
f holomorphic on � W

Z
�

jf .z/j2 dV.z/1=2 � kf kA2.�/ < 1
�
:

Of course we equip the Bergman space with the inner product

hf; gi D
Z
�

f .z/g.z/ dV.z/:

Lemma 1.1.1. Let K � � � C
n be compact. There is a constant CK > 0;

depending on K and on n; such that

sup
z2K

jf .z/j � CKkf kA2.�/; all f 2 A2.�/:

Proof. Since K is compact, there is an r.K/ D r > 0 so that, for any z 2
K;B.z; r/ � �: Here B.z; r/ is the usual Euclidean ball with center z and radius r .

Therefore for each z 2 K and f 2 A2.�/; the mean-value property for
holomorphic functions implies that
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jf .z/j D
ˇ̌
ˇ̌ 1

V.B.z; r//

Z
B.z;r/

f .t/ dV.t/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ 1

V.B.z; r//

Z
f .t/�B.z;r/.t/ dV.t/

ˇ̌
ˇ̌

� .V .B.z; r///�1=2kf kL2.B.z;r//
� C.n/r�nkf kA2.�/
� CKkf kA2.�/:

Lemma 1.1.2. The space A2.�/ is a Hilbert space with the inner product hf; gi �R
�
f .z/g.z/ dV.z/:

Proof. Everything is clear except for completeness. Let ffj g � A2 be a sequence
that is Cauchy in norm. SinceL2 is complete there is anL2 limit function f:We need
to see that f is holomorphic. But Lemma 1.1.1 yields that norm convergence
implies normal convergence (i.e., uniform convergence on compact sets). Certainly
holomorphic functions are closed under normal limits (just use the Cauchy theory
of one complex variable). Therefore f is holomorphic and A2.�/ is complete.

Lemma 1.1.3. For each fixed z 2 �; the functional

˚z W f 7! f .z/; f 2 A2.�/
is a continuous linear functional on A2.�/:

Proof. This is immediate from Lemma 1.1.1 if we takeK to be the singleton fzg:

We may now apply the Riesz representation theorem to see that there is an
element Kz 2 A2.�/ such that the linear functional ˚z is represented by inner
product with Kz W if f 2 A2.�/, then, for all z 2 �, we have

f .z/ D ˚z.f / D hf;Kzi:

Definition 1.1.4. The Bergman kernel is the functionK.z; �/ D K�.z; �/ � Kz.�/,
z; � 2 �: It has the reproducing property

f .z/ D
Z
�

K.z; �/f .�/ dV.�/; 8f 2 A2.�/:

Proposition 1.1.5. The Bergman kernelK.z; �/ is conjugate symmetric:K.z; �/ D
K.�; z/:

Proof. By its very definition, K.�; �/ 2 A2.�/ for each fixed �: Therefore the
reproducing property of the Bergman kernel gives
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Z
�

K.z; t /K.�; t/ dV.t/ D K.�; z/:

On the other hand,

Z
�

K.z; t /K.�; t/ dV.t/ D
Z
K.�; t/K.z; t / dV.t/

D K.z; �/ D K.z; �/:

Proposition 1.1.6. The Bergman kernel is uniquely determined by the properties
that it is an element of A2.�/ in z; is conjugate symmetric, and reproduces A2.�/:

Proof. Let K 0.z; �/ be another such kernel. Then

K.z; �/ D K.�; z/ D
Z
K 0.z; t /K.�; t/ dV.t/

D
Z
K.�; t/K 0.z; t / dV.t/

D K 0.z; �/ D K 0.z; �/:

Since L2.�/ is a separable Hilbert space then so is its subspace A2.�/: Thus
there is a countable, complete orthonormal basis f�j g1

jD1 for A2.�/:

Proposition 1.1.7. Let L be a compact subset of �: Then the series

1X
jD1

�j .z/�j .�/

sums uniformly on L � L to the Bergman kernel K.z; �/:

Proof. By the Riesz–Fischer and Riesz representation theorems, we obtain

sup
z2L

0
@ 1X
jD1

j�j .z/j2
1
A
1=2

D sup
z2L

���f�j .z/g1
jD1

���
`2

D sup
kfaj gk

`2
D1

z2L

ˇ̌
ˇ̌
ˇ̌

1X
jD1

aj �j .z/

ˇ̌
ˇ̌
ˇ̌

D sup
kf k

A2
D1

z2L

jf .z/j

� CL : (1.1.7.1)
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In the last inequality we have used Lemma 1.1.1. Therefore

1X
jD1

ˇ̌
ˇ�j .z/�j .�/

ˇ̌
ˇ �

0
@ 1X
jD1

j�j .z/j2
1
A
1=20
@ 1X
jD1

j�j .�/j2
1
A
1=2

and the convergence is uniform over z; � 2 L. For fixed z 2 �; (1.1.7.1) shows that
f�j .z/g1

jD1 2 `2:Hence we have that
P
�j .z/�j .�/ 2 A2.�/ as a function of �: Let

the sum of the series be denoted by K 0.z; �/: Notice that K 0 is conjugate symmetric
by its very definition. Also, for f 2 A2.�/; we have

Z
K 0.�; �/f .�/ dV.�/ D

X Of .j /�j .�/ D f .�/;

where convergence is in the Hilbert space topology. (Here Of .j / is the j th Fourier
coefficient of f with respect to the basis f�j g:) But Hilbert space convergence
dominates pointwise convergence (Lemma 1.1.1) so

f .z/ D
Z
K 0.z; �/f .�/ dV.�/; all f 2 A2.�/:

Therefore K 0 is the Bergman kernel.

Remark 1.1.8. It is worth noting explicitly that the proof of Proposition 1.1.7
shows that

X
�j .z/�j .�/

equals the Bergman kernelK.z; �/ no matter what the choice of complete orthonor-
mal basis f�j g for A2.�/. This can be very useful information in practice.

Proposition 1.1.9. If � is a bounded domain in C
n, then the mapping

P W f 7!
Z
�

K.�; �/f .�/ dV.�/

is the Hilbert space orthogonal projection of L2.�; dV / onto A2.�/:We call P the
Bergman projection.

Proof. Notice that P is idempotent and self-adjoint and that A2.�/ is precisely the
set of elements of L2 that are fixed by P:
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Definition 1.1.10. Let� � C
n be a domain and let f W � ! C

n be a holomorphic
mapping, that is, f .z/ D .f1.z/; : : : ; fn.z// with f1; : : : ; fn holomorphic on �: Let
wj D fj .z/; j D 1; : : : ; n: Then the holomorphic Jacobian matrix of f is the
matrix

JCf D @.w1; : : : ;wn/

@.z1; : : : ; zn/
:

Write zj D xj C iyj ;wk D �k C i�k; j; k D 1; : : : ; n: Then the real Jacobian
matrix of f is the matrix

JRf D @.�1; �1; : : : ; �n; �n/

@.x1; y1; : : : ; xn; yn/
:

Proposition 1.1.11. With notation as in the definition, we have

det JRf D jdetJCf j2

whenever f is a holomorphic mapping.

Proof. We exploit the functoriality of the Jacobian. Let w D .w1; : : : ;wn/ D
f .z/ D .f1.z/; : : : ; fn.z//: Write zj D xj C iyj ;wj D �j C i�j ; j D 1; : : : ; n:

Then, using the fact that f is holomorphic,

d�1^d�1^� � �^d�n^d�n D .det JRf .x; y//dx1^dy1^� � �^dxn^dyn: (1.1.11.1)

On the other hand,

d�1 ^ d�1 ^ � � � ^ d�n ^ d�n

D 1

.2i/n
dw1 ^ dw1 ^ � � � ^ dwn ^ dwn

D 1

.2i/n
.det JCf .z//.det JCf .z//dz1 ^ dz1 ^ � � � ^ dzn ^ dzn

D jdet JCf .z/j2dx1 ^ dy1 ^ � � � ^ dxn ^ dyn: (1.1.11.2)

Equating (1.1.11.1) and (1.1.11.2) gives the result.

Exercise for the Reader: Prove Proposition 1.1.11 using only matrix theory (no
differential forms). This will give rise to a great appreciation for the theory of
differential forms (see Bers [BERS, Chap. 7] for help).

Now we can prove the holomorphic implicit function theorem:
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Theorem 1.1.12. Let fj .w; z/; j D 1; : : : ; m be holomorphic functions of .w; z/ D
..w1; : : : ;wm/; .z1; : : : ; zn// near a point .w0; z0/ 2 C

m � C
n: Assume that

fj .w
0; z0/ D 0; j D 1; : : : ; m;

and that

det

�
@fj

@wk

�m
j;kD1

6D 0 at .w0; z0/:

Then the system of equations

fj .w; z/ D 0 ; j D 1; : : : ; m;

has a unique holomorphic solution w.z/ in a neighborhood of z0 that satisfies
w.z0/ D w0:

Proof. We rewrite the system of equations as

Re fj .w; z/ D 0 ; Imfj .w; z/ D 0

for the 2m real variables Re wk; Im wk; k D 1; : : : ; m: By Proposition 1.1.11, the
determinant of the Jacobian over R of this new system is the modulus squared
of the determinant of the Jacobian over C of the old system. By our hypothesis,
this number is nonvanishing at the point .w0; z0/: Therefore the classical implicit
function theorem (see Rudin [RUD1] or [KRPA2]) implies that there exist C1

functions wk.z/; k D 1; : : : ; m; with w.z0/ D w0 and that solve the system. Our
job is to show that these functions are in fact holomorphic. When properly viewed,
this is purely a problem of geometric algebra:

Applying exterior differentiation to the equations

0 D fj .w.z/; z/ ; j D 1; : : : ; m;

yields that

0 D dfj D
mX
kD1

@fj

@wk
dwk C

mX
kD1

@fj

@zk
dzk:

There are no dzj ’s and no dwk’s because the fj ’s are holomorphic.
The result now follows from linear algebra only: The hypothesis on the deter-

minant of the matrix .@fj =@wk/ implies that we can solve for dwk in terms of dzj :
Therefore w is a holomorphic function of z:
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A holomorphic mapping f W �1 ! �2 of domains �1 � C
n;�2 � C

n is said
to be biholomorphic if it is one-to-one, onto, and detJCf .z/ 6D 0 for every z 2 �1:

Exercise for the Reader: Use Theorem 1.1.12 to prove that a biholomorphic
mapping has a holomorphic inverse (hence the name).

Remark 1.1.13. It is true, but not at all obvious, that the nonvanishing of the
Jacobian determinant is a superfluous condition in the definition of “biholomorphic
mapping”; that is, the nonvanishing of the Jacobian follows from the univalence
of the mapping. A proof of this assertion is sketched in Exercise 37 at the end of
[KRA1, Chap. 11].

In what follows we shall frequently denote the Bergman kernel for a given
domain � by K�:

Proposition 1.1.14. Let �1;�2 be domains in C
n: Let f W �1 ! �2 be

biholomorphic. Then

det JCf .z/K�2.f .z/; f .�//det JCf .�/ D K�1.z; �/:

Proof. Let � 2 A2.�1/: Then, by change of variable,

Z
�1

det JCf .z/K�2.f .z/; f .�//det JCf .�/�.�/ dV.�/

D
Z
�2

det JCf .z/K�2.f .z/; Q�/detJCf .f �1. Q�//�.f �1. Q�//

�det JRf
�1. Q�/ dV. Q�/:

By Proposition 1.1.11 this simplifies to

det JCf .z/
Z
�2

K�2.f .z/; Q�/
��

det JCf .f
�1. Q�//

��1
�
�
f �1. Q�/

��
dV. Q�/:

By change of variables, the expression in braces f g is an element of A2.�2/: So
the reproducing property of K�2 applies and the last line equals

D det JCf .z/ .det JCf .z//
�1 �

	
f �1.f .z//


 D �.z/:

By the uniqueness of the Bergman kernel, the proposition follows.
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Proposition 1.1.15. For z 2 � �� C
n it holds that K�.z; z/ > 0:

Proof. Now

K�.z; z/ D
1X
jD1

j�j .z/j2 � 0:

If in fact K.z; z/ D 0 for some z, then �j .z/ D 0 for all j ; hence, f .z/ D 0 for
every f 2 A2.�/: This is absurd.

Definition 1.1.16. For any bounded domain� � C
n, we define a Hermitian metric

on � by

gij .z/ D @2

@zi @zj
logK.z; z/; z 2 �:

This means that the square of the length of a tangent vector � D .�1; : : : ; �n/ at a
point z 2 � is given by

j�j2B;z D
X
i;j

gij .z/�i �j :

The metric that we have defined is called the Bergman metric.

In a Hermitian metric fgij g; the length of a C1 curve 	 W Œ0; 1
 ! � is given by

`.	/ D
Z 1

0

0
@X

i;j

gi;j .	.t//	
0
i .t /	

0
j .t/

1
A
1=2

dt:

If P;Q are points of �, then their distance d�.P;Q/ in the metric is defined to be
the infimum of the lengths of all piecewise C1 curves connecting the two points.

Remark 1.1.17. It is not a priori obvious that the Bergman metric for a bounded
domain � is given by a positive definite matrix at each point. We now outline a
proof of this fact.

First we generate an orthonormal basis for the Bergman space. Fix z0 2 �: Let
�0 be the (unique!) element of A2 with �0.z0/ real, k�0k D 1; and �0.z0/ maximal.
(Why does such a �0 exist?) Let �1 be the (unique) element of A2 with �1.z0/ D
0; .@�1=@z1/.z0/ real, k�1k D 1; and .@�1=@z1/.z0/ maximal. (Why does such a �1
exist?) Now �1 is orthogonal to �0; else �1 has nonzero projection on �0; leading
to a contradiction. Continue this process to create an orthogonal system on �: Use
Taylor series to see that it is complete. This circle of ideas comes from the elegant
paper Kobayashi [KOB1].

Now let � � C
n be a bounded domain and let .gij / be its Bergman metric. Use

the ideas in the last paragraph to prove that the matrix .gij .z// is positive definite,
each z 2 �. [Hint: The crucial fact is that, for each z 2 � and each j , there is an
element f 2 A2.�/ such that @f=@zj .z/ 6D 0:]
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Proposition 1.1.18. Let �1;�2 � C
n be domains and let f W �1 ! �2 be a

biholomorphic mapping. Then f induces an isometry of Bergman metrics:

j�jB;z D j.JCf /�jB;f .z/
for all z 2 �1; � 2 C

n: Equivalently, f induces an isometry of Bergman distances
in the sense that

d�2.f .P /; f .Q// D d�1.P;Q/:

Proof. This is a formal exercise but we include it for completeness: From the
definitions, it suffices to check that

X
g
�2
i;j .f .z// .JCf .z/w/i

�
JCf .z/w

�
j

D
X
i;j

g
�1
ij .z/wiwj (1.1.18.1)

for all z 2 �;w D .w1; : : : ;wn/ 2 C
n: But, by Proposition 1.1.14,

g
�1
ij .z/ D @2

@zi zj
logK�1.z; z/

D @2

@zi zj
log

˚jdet JCf .z/j2K�2.f .z/; f .z//
�

D @2

@zi zj
logK�2.f .z/; f .z// (1.1.18.2)

since log jdet JCf .z/j2 is locally

log .det JCf /C log
�

det JCf
�

C C

hence is annihilated by the mixed second derivative. But line (1.1.18.2) is nothing
other than

X
`;m

g
�2
`;m.f .z//

@f`.z/

@zi

@fm.z/

@zj

and (1.1.18.1) follows.

Proposition 1.1.19. Let � �� C
n be a domain. Let z 2 �: Then

K.z; z/ D sup
f 2A2.�/

jf .z/j2
kf k2

A2

D sup
kf kA2.�/D1

jf .z/j2:



12 1 Introductory Ideas

Proof. Now

K.z; z/ D
X

j�j .z/j2

D
 

sup
kfaj gk`2D1

ˇ̌
ˇX�j .z/aj

ˇ̌
ˇ
!2

D sup
kf kA2D1

jf .z/j2;

by the Riesz–Fischer theorem,

D sup
f 2A2

jf .z/j2
kf k2

A2

:

We shall use this proposition in a moment. Meanwhile, we should like to briefly
mention some open problems connected with the Bergman kernel:

The Lu Qi-Keng Conjecture

We have already noticed that K�.z; z/ > 0; all z 2 �; any bounded �: It is
reasonable to ask whether K�.z; �/ is ever equal to zero. In fact various geometric
constructions connected with the Bergman metric and associated biholomorphic
invariants (which involve division by K) make it particularly desirable that K be
nonvanishing.

If � D D; the unit disc, then explicit calculation (which we perform below)
shows that

K.z; �/ D 1

�

1

.1 	 z�/2
;

hence, K.z; �/ is nonvanishing on D � D: Proposition 1.1.14 and the Riemann
mapping theorem then show that the Bergman kernel for any proper simply
connected subdomain of C is nonvanishing.

The Bergman kernel for the annulus was studied in Skwarczynski [SKW] and
was seen to vanish at some points. It is shown in Suita and Yamada [SUY] that
if � � C is a multiply connected domain with smooth boundary, then K� must
vanish—this is proved by an analysis of differentials on the Riemann surface
consisting of the double of �: By using the easy fact that the Bergman kernel for a
product domain is the product of the Bergman kernels (exercise), we may conclude
that any domain in C

2 of the form A � �; where A is multiply connected, has a
Bergman kernel with zeroes. The Lu Qi-Keng conjecture can be formulated as
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Conjecture: A topologically trivial domain in C
n has nonvanishing Bergman kernel.

It is known (Greene and Krantz [GRK1, GRK2]) that a domain that is C1
sufficiently close to the ball in C

n has nonvanishing Bergman kernel. Also, if a
domain � has Bergman kernel that is bounded from zero (and satisfies a modest
geometric condition), then all “nearby” domains have Bergman kernel that is
bounded from zero. Thus it came as a bit of a surprise when in Boas [BOA1]
and [BOA2], it was shown that there exist topologically trivial domains—even
ones with real analytic boundary and satisfying all reasonable additional geometric
conditions—for which the Bergman kernel has zeroes. See also Wiegerinck [WIE],
where interesting ideas contributing to the solution of this problem first arose.
In Sect. 5.7 we treat the results of Boas.

Exercise for the Reader: The set of smoothly bounded domains for which the Lu
Qi-Keng conjecture is true is closed in the Hausdorff topology on domains.

We shall say more about the Lu Qi-Keng conjecture in Sect. 5.7.

Smoothness to the Boundary of K�

It is of interest to know whether K� is smooth on � � �: We can see from the
formula above for the Bergman kernel of the disc thatKD.z; z/ blows up as z ! 1�:
In fact this property of blowing up prevails at any boundary point of a domain at
which there is a peaking function (apply Proposition 1.1.19 to a high power of the
peaking function). The reference Gamelin [GAM, p. 52 ff.] contains background
information on peaking functions.

However, there is strong evidence that—as long as � is smoothly bounded—on
compact subsets of

� �� n ..@� � @�/ \ fz D �g/

the Bergman kernel will be smooth. For strictly pseudoconvex domains, this
statement is true; its proof (see [KER2]) uses deep and powerful methods of partial
differential equations. Unfortunately, on the Diederich–Fornæss worm domain
(which is smoothly bounded, pseudoconvex but has many pathological properties),
the Bergman kernel is not smooth as just indicated. See also [KRP1, KRP2] as well
as [LIG1].

In what follows, a multi-index in C
n is an n-tuple ˛ D .a1; a2; : : : ; an/ of

nonnegative integers. We write

z˛ � za11 � za22 � � � � � zann :
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Also

@˛

@z˛
� @a1

@za11

@a2

@za22
� � � @

an

@zann

Perhaps the most central open problem in the function theory of several complex
variables is to prove that a biholomorphic mapping of two smoothly bounded,
pseudoconvex domains extends to a diffeomorphism of the closures. It is known
(see Bell and Boas [BEB]) that a sufficient condition for this problem to have an
affirmative answer on a smoothly bounded domain � � C

n is that, for any multi-
index ˛, there are constants C D C˛ and m D m˛ such that the Bergman kernel
K� satisfies

sup
z2�

ˇ̌
ˇ̌ @˛
@z˛

K�.z; �/

ˇ̌
ˇ̌ � C � ı�.�/�m

for all � 2 �: Here ı�.w/ denotes the distance of the point w 2 � to the boundary
of the domain.

1.1.1 Calculating the Bergman Kernel

The Bergman kernel can almost never be calculated explicitly; unless the domain
� has a great deal of symmetry—so that a useful orthonormal basis for A2.�/
can be determined—there are few techniques for determining K�. Sometimes one
can exploit the automorphism group of the domain (see [HUA] for an exemplary
instance of this technique). We shall explore some of these ideas below.

In 1974 Fefferman [FEF1, Part I] introduced a new technique for obtaining an
asymptotic expansion for the Bergman kernel on a large class of domains. (For
an alternative approach, see Boutet de Monvel and Sjöstrand [BOS].) This work
enabled rather explicit estimations of the Bergman metric and opened up an entire
branch of analysis on domains in C

n (see, e.g., Fefferman [FEF2], Chern and Moser
[CHM], Klembeck [KLE], and Greene and Krantz [GRK1, GRK2, GRK3, GRK4,
GRK5, GRK6, GRK7, GRK8, GRK9, GRK10, GRK11]).

The Bergman theory that we have presented here would be a bit hollow if we
did not at least calculate the kernel in a few instances. We complete the section by
addressing that task.

Restrict attention to the ball B � C
n: The functions z˛; ˛ a multi-index, are

each in A2.B/ and are pairwise orthogonal by the symmetry of the ball. By the
uniqueness of the power series expansion for an element of A2.B/; the elements
z˛ form a complete orthonormal system on B (their closed linear span is A2.B/).
Setting
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	˛ D
Z
B

jz˛j2 dV.z/;

we see that fz˛=
p
	˛g is a complete orthonormal system in A2.B/: Thus by

Proposition 1.1.7,

K.z; �/ D
X
˛

z˛�
˛

	˛
: (1.1.1.1)

If we want to calculate the Bergman kernel for the ball in closed form, we need
to calculate the 	˛’s. This requires some lemmas from real analysis. These lemmas
will be formulated and proved on R

N and BN D fx 2 R
N W jxj < 1g:

Lemma 1.1.20. We have that
Z
RN

e��jxj2dx D 1:

Proof. The case N D 1 is familiar from calculus (or see [BKR, Sect. 6.6]). For the
N -dimensional case, write

Z
RN

e��jxj2dx D
Z
R

e��x21dx1 � � �
Z
R

e��x2N dxN

and apply the one-dimensional result.

Let � be the unique rotationally invariant area measure on SN�1 D @BN and let
!N�1 D �.@B/:

Lemma 1.1.21. We have

!N�1 D 2�N=2

 .N=2/
;

where

 .x/ D
Z 1

0

tx�1e�tdt

is Euler’s gamma function.

Proof. Introducing polar coordinates we have

1 D
Z
RN

e��jxj2dx D
Z
SN�1

d�
Z 1

0

e��r2rN�1dr
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or

1

!N�1
D
Z 1

0

e��r2rN
dr

r
:

Letting s D r2 in this last integral and doing some obvious manipulations yields the
result.

Now we return to B � C
n: We set

�.k/ D
Z
@B

jz1j2kd�; N.k/ D
Z
B

jz1j2k dV.z/; k D 0; 1; : : : :

Lemma 1.1.22. We have

�.k/ D �n
2.kŠ/

.k C n 	 1/Š ; N.k/ D �n
kŠ

.k C n/Š
:

Proof. Polar coordinates show easily that �.k/ D 2.kC n/N.k/: So it is enough to
calculate N.k/: Let z D .z1; z2; : : : ; zn/ D .z1; z0/: We write

N.k/ D
Z

jzj<1
jz1j2k dV.z/

D
Z

jz0j<1

 Z
jz1j�

p
1�jz0j2

jz1j2k dV.z1/

!
dV.z0/

D 2�

Z
jz0j<1

Z p
1�jz0j2

0

r2krdr dV.z0/

D 2�

Z
jz0j<1

.1 	 jz0j2/kC1

2k C 2
dV.z0/

D �

k C 1
!2n�3

Z 1

0

.1 	 r2/kC1r2n�3dr

D �

k C 1
!2n�3

Z 1

0

.1 	 s/kC1sn�1 ds

2s

D �

2.k C 1/
!2n�3ˇ.n 	 1; k C 2/;

where ˇ is the classical beta function of special function theory (see Carrier et al.
[CCP, p. 191] or Whittaker and Watson [WHW, pp. 235 ff.]). By a standard identity
for the beta function we then have



1.1 The Bergman Kernel 17

N.k/ D �

2.k C 1/
!2n�3

 .n 	 1/ .k C 2/

 .nC k C 1/

D �

2.k C 1/

2�n�1

 .n 	 1/
 .n 	 1/ .k C 2/

 .nC k C 1/

D �nkŠ

.k C n/Š
:

This is the desired result.

Lemma 1.1.23. Let z 2 B � C
n and 0 < r < 1: The symbol 1 denotes the point

.1; 0; : : : ; 0/: Then

KB.z; r1/ D nŠ

�n
1

.1 	 rz1/nC1 :

Proof. Refer to formula (1.1.1.1) preceding Lemma 1.1.20. Then

KB.z; r1/ D
X
˛

z˛.r1/˛

	˛
D

1X
kD0

zk1r
k

N.k/

D 1

�n

1X
kD0
.rz1/k � .k C n/Š

kŠ

D nŠ

�n

1X
kD0
.rz1/k

�
k C n

n

�

D nŠ

�n
� 1

.1 	 rz1/nC1 :

This is the desired result.

Theorem 1.1.24. If z; � 2 B , then the Bergman kernel for the unit ball in C
n is

KB.z; �/ D nŠ

�n
1

.1 	 z � �/nC1 ;

where z � � D z1�1 C z2�2 C � � � C zn�n:

Proof. Let z D r Qz 2 B; where r D jzj and jQzj D 1: Also, fix � 2 B: Choose a
unitary rotation � such that �Qz D 1: Then, by Proposition 1.1.14 and Lemma 1.1.23,
we have
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KB.z; �/ D KB.r Qz; �/ D K.r��11; �/

D K.r1; ��/ D K.��; r1/

D nŠ

�n
� 1�
1 	 r.��/1

�nC1

D nŠ

�n
� 1�
1 	 .r1/ � .��/

�nC1

D nŠ

�n
� 1�
1 	 .r��11/ � �

�nC1

D nŠ

�n
� 1

.1 	 z � �/nC1 :

Corollary 1.1.25. The Bergman kernel for the unit disc in the complex plane is

KD.z; �/ D 1

�

1

.1 	 z�/2
:

Proposition 1.1.26. The Bergman metric for the ball B D B.0; 1/ � C
n is

given by

gij .z/ D nC 1

.1 	 jzj2/2
�
.1 	 jzj2/ıij C zi zj


:

Proof. Since K.z; z/ D nŠ=.�n.1 	 jzj2/nC1/; this is a routine computation that we
leave to the reader.

Corollary 1.1.27. The Bergman metric for the disc (i.e., the ball in dimension
one) is

gij .�/ D 2

.1 	 j�j2/2 ; i D j D 1;

This is the well-known Poincaré, or Poincaré-Bergman, metric.

Proposition 1.1.28. The Bergman kernel for the polydisc Dn.0; 1/ � C
n is the

product

K.z; �/ D 1

�n

nY
jD1

1

.1 	 zj �j /2
:
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Proof. Exercise for the reader. Use the uniqueness property of the Bergman kernel.

Exercise for the Reader: Calculate the Bergman metric for the polydisc.

1.1.2 The Poincaré-Bergman Distance on the Disc

If D � C is the unit disc, � 2 D; then Corollary 1.1.27 shows that

jwjB;z D
�

2jwj2
.1 	 j�j2/2

� 1=2
D

p
2jwj

1 	 j�j2 ;

where the subscriptB indicates that we are working in the Bergman metric. We now
use this formula to derive an explicit expression for the Poincaré-Bergman distance
from 0 2 D to r C i0 2 D; 0 < r < 1: Call this distance d.0; r/: Then

d.0; r/ D inf

�Z 1

0

j	 0.t/jB;	.t/dt W

	 is a piecewise smooth curve in D; 	.0/ D 0; 	.1/ D r C i0g :

Elementary comparisons show that, among curves of the form .t/ D tCiw.t/; 0 �
t � 1; the curve 	.t/ D t r C i0 is the shortest in the Poincaré metric. Further
elementary arguments show that a general curve of the form  .t/ D v.t/C iw.t/ is
always longer than some corresponding curve of the form t C i Qw.t/: We leave the
details of these assertions to the reader. Thus

d.0; r/ D
Z 1

0

p
2r

.1 	 .rt/2/dt

D p
2

Z r

0

1

1 	 t 2 dt

D 1p
2

log

�
1C r

1 	 r
�
:

Since rotations are conformal maps of the disc, we may next conclude that

d.0; rei� / D 1p
2

log

�
1C r

1 	 r
�
:
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Finally, if w1;w2 are arbitrary, then the Möbius transformation

� W z 7! z 	 w1
1 	 w1z

satisfies �.w1/ D 0; �.w2/ D .w2 	 w1/=.1 	 w1w2/: Then Proposition 1.1.18
yields that

d.w1;w2/ D d

�
0;

w2 	 w1
1 	 w1w2

�

D 1p
2

0
@1C

ˇ̌
ˇ w2�w1
1�w1w2

ˇ̌
ˇ

1 	
ˇ̌
ˇ w2�w1
1�w1w2

ˇ̌
ˇ

1
A :

We note in passing that the expression �.w1;w2/ � j.w2 	 w1/=.1 	 w1w2/j is
called the pseudohyperbolic distance. It is also conformally invariant, but it does
not arise from integrating an infinitesimal metric (i.e., lengths of tangent vectors at
a point). A fuller discussion of both the Poincaré metric and the pseudohyperbolic
metric on the disc may be found in [KRA9] and [GAR, Chap. 1].

1.1.3 Construction of the Bergman Kernel by Way
of Differential Equations

It is actually possible to obtain the Bergman kernel of a domain in the plane from the
Green’s function for that domain (see [KRA5, Sect. 1.3.3]). Let us now summarize
the key ideas. Unlike the first Bergman kernel construction, the present one will
work for any domain with C2 boundary. Thanks to work of Garabedian [GARA],
one can say rather precisely what the Green’s function of any planar domain is (see
also [JAK]).

First, the fundamental solution for the Laplacian in the plane is the function

 .�; z/ D 1

2�
log j� 	 zj :

This means that 4� .�; z/ D ız in the sense of distributions. (Observe that ız

denotes the Dirac “delta mass” at z and 4� is the Laplacian in the � variable.) In
more prosaic terms, the condition is that

Z
 .�; z/ � 4'.�/ d�d� D '.z/

for any C1 function ' with compact support. We write, as usual, � D �C i�. (This
topic is treated in detail in [KRA1, Chaps. 0, 1].)
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Given a domain � � C, the Green’s function is posited to be a function G.�; z/
on � �� that satisfies

G.�; z/ D  .�; z/ 	 Fz.�/ ;

where Fz.�/ D F.�; z/ is a particular harmonic function in the � variable (to
be specified momentarily). Moreover, it is mandated that G. � ; z/ vanish on the
boundary of �. One constructs the function F. � ; z/, for each fixed z, by solving a
Dirichlet problem with boundary data  . � ; z/. Again, the reference [KRA1, p. 40]
has all the particulars. It is worth noting, and this point is not completely obvious but
is discussed in [KRA1, Chap. 1], that the Green’s function is a symmetric function
of its arguments.

The next proposition establishes a striking connection between the Bergman
kernel and the classical Green’s function.

Proposition 1.1.29. Let � � C be a bounded domain with C2 boundary. Let
G.�; z/ be the Green’s function for � and let K.z; �/ be the Bergman kernel for
�. Then

K.z; �/ D 4 � @2

@�@z
G.�; z/: (1.1.29.1)

Proof. Our proof will use a version of Stokes’s theorem written in the notation of
complex variables. It says that, if u 2 C1.�/, then

I
@U

u.�/ d� D 2i �
ZZ

U

@u

@�
d� d�; (1.1.29.2)

where again � D �Ci�. The reader is invited to convert this formula to an expression
in � and � and to confirm that the result coincides with the standard real-variable
version of Stokes’s theorem that can be found in any calculus book (see, e.g., [THO,
BLK]).

Now we already know that

G.�; z/ D 1

4�
log.� 	 z/C 1

4�
log .� 	 z/C F.�; z/: (1.1.29.3)

Here we think of the logarithm as a multivalued holomorphic function; after we
take a derivative, the ambiguity (which comes from an additive multiple of 2�i)
goes away.

Differentiating with respect to z (and using subscripts to denote derivatives), we
find that

Gz.�; z/ D 1

4�

	1
� 	 z

C Fz.�; z/ :
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We may rearrange this formula to read

1

� 	 z
D 	4� �Gz.�; z/C 4�Fz.�; z/ :

We know that G, as a function of �, vanishes on @�. Hence so does Gz. Let f 2
C2.�/ be holomorphic on �. It follows that the Cauchy formula

f .z/ D 1

2�i

I
@�

f .�/

� 	 z
d�

can be rewritten as

f .z/ D 	2i
I
@�

f .�/Fz.�; z/ d�:

Now we apply Stokes’s theorem (in the complex form) to rewrite this last as

f .z/ D 4 �
ZZ

�

.f .�/Fz/�.�; z/ d� d�;

where � D � C i�. Since f is holomorphic and F is real valued, we may
conveniently write this last formula as

f .z/ D 4 �
ZZ

�

f .�/F�z.�; z/ d� d�:

Now formula (1.1.29.3) tells us that F�z D G�z. Therefore we have

f .z/ D
ZZ

�

f .�/4G�z.�; z/ d� d�: (1.1.29.4)

With a suitable limiting argument, we may extend this formula from functions f
that are holomorphic and in C2.�/ to functions in A2.�/.

It is straightforward now to verify that 4G�z satisfies the first three characterizing
properties of the Bergman kernel, just by examining our construction. The crucial
reproducing property is of course formula (1.1.29.4). Then it follows that

K.z; �/ D 4 � @2

@�@z
G.�; z/ :

That is the desired result.

It is worth noting that the proposition we have just established gives a practical
method for confirming the existence of the Bergman kernel—by relating it to the
Green’s function, whose existence is elementary. See [HAP1, HAP2] for a version
of these techniques in the several complex variable contexts.
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Now let us calculate. Of course the Green’s function of the unit disc D is

G.�; z/ D 1

2�
log j� 	 zj 	 1

2�
log j1 	 �zj ;

as a glance at any classical complex analysis text will tell us (see, e.g., [AHL] or
[HIL]). Verify the defining properties of the Green’s function for yourself.

With formula (1.1.29.1) in mind, we can make life a bit easier by writing

G.�; z/ D 1

4�
log.� 	 z/C 1

4�
log.� 	 z/

	 1

4�
log .1 	 �z/ 	 1

4�
log

�
1 	 �z

�
:

Here we think of the expression on the right as the concatenation of four multivalued
functions, in view of the ambiguity of the logarithm function. This ambiguity is
irrelevant for us because the derivative of the Green’s function is still well defined
(i.e., the derivative annihilates additive constants).

Now we readily calculate that

@G

@z
D 1

4�
� 	1
� 	 z

C 1

4�
� �

1 	 �z

and

@2G

@�@z
D 1

4�
� 1

.1 	 �z/2
:

In conclusion, we may apply Proposition 1.1.29 to see that

K.z; �/ D 1

�
� 1

.1 	 z � �/2 :

This result is consistent with that obtained in the other two calculations (Sects. 1.1.2
and 1.1.3). The Bergman metric, as before, is obtained by differentiation.

1.1.4 Construction of the Bergman Kernel by Way
of Conformal Invariance

LetD � C be the unit disc. First we notice that if either f 2 A2.D/ or f 2 A2.D/,
then

f .0/ D 1

�

ZZ

D

f .�/ dA.�/: (1.1.4.1)
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This is the standard, two-dimensional area form of the mean-value property for
holomorphic or harmonic functions.

Of course the constant function u.z/ � 1 is in A2.D/, so it is reproduced by
integration against the Bergman kernel. Hence, for any w 2 D,

1 D u.w/ D
ZZ

D

K.w; �/u.�/ dA.�/ D
ZZ

D

K.w; �/ dA.�/ ;

or

1

�
D 1

�

ZZ

D

K.w; �/ dA.�/ :

By (1.1.4.1), we may conclude that

1

�
D K.w; 0/

for any w 2 D.
Now, for a 2 D fixed, consider the Möbius transformation

h.z/ D z 	 a
1 	 az

:

We know that

h0.z/ D 1 	 jaj2
.1 	 az/2

:

We may thus apply Proposition 1.1.14 with � D h to find that

K.w; a/ D h0.w/ �K.h.w/; h.a// � h0.a/

D 1 	 jaj2
.1 	 aw/2

�K.h.w/; 0/ � 1

1 	 jaj2

D 1

.1 	 aw/2
� 1
�

D 1

�
� 1

.1 	 wa/2
:

This is our formula for the Bergman kernel.
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1.2 The Szegő and Poisson–Szegő Kernels

The basic theory of the Szegő kernel is similar to that for the Bergman kernel—
they are both special cases of a general theory of “Hilbert spaces with reproducing
kernel” (see [ARO]). Thus we only outline the basic steps here, leaving details to
the reader. See Sect. 1.3 and also the paper [KRA11].

Let � � C
n be a bounded domain with C2 boundary. Let A.�/ be those

functions continuous on � that are holomorphic on �: Let H2.@�/ be the space
consisting of the closure in the L2.@�; d�/ topology of the restrictions to @� of
elements of A.�/: Then H2.@�/ is a proper Hilbert subspace of L2.@�/: Each
element f 2 H2.@�/ has a natural holomorphic extension to� given by its Poisson
integral Pf: It is a standard fact—see [KRA1, Chap. 8]—that

lim
�!0C

f .� 	 ���/ D f .�/

for almost every � in the boundary of �. Here, as usual, �� is the unit outward
normal to @� at the point �:

For each fixed z 2 �, the functional

 z W H2.�/ 3 f 7! Pf .z/

is continuous. (Why?—you may find the Bochner–Martinelli formula [KRA1]
useful here. See also [KRA11]. We shall treat this matter in more detail in
Example 1.2.1 below.) Let Qkz.�/ be the Hilbert space representative (coming from
the Riesz representation theorem) for the functional  z: Define the Szegő kernel
S.z; �/ by the formula

S.z; �/ D Qkz.�/ ; z 2 �; � 2 @�:

If f 2 H2.@�/, then

f .z/ D
Z
@�

S.z; �/f .�/d�.�/

for all z 2 �: Here d� is .2n	 1/-dimensional Hausdorff measure on @�. We shall
not explicitly formulate and verify the various uniqueness and extremal properties
for the Szegő kernel. The statements and proofs are exactly like those for the
Bergman kernel. The reader is invited to consider these topics.

Example 1.2.1. We now want to describe the Szegő theory. In order to make this
work, we need to present some preliminary results about the Bochner–Martinelli
kernel and integral representation formula.
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Definition 1.2.2. On C
n we let

!.z/ � dz1 ^ dz2 ^ � � � ^ dzn

�.z/ �
nX

jD1
.	1/jC1zj dz1 ^ � � � ^ dzj�1 ^ dzjC1 ^ � � � ^ dzn:

The form � is sometimes called the Leray form. We shall often write !.z/ to mean
dz1^� � �^dzn and likewise �.z/ to mean

Pn
jD1.	1/jC1zj dz1^� � �^dzj�1^dzjC1^

� � � ^ dzn.
The genesis of the Leray form is explained by the following lemma.

Lemma 1.2.3. For any z0 2 C
n; any � > 0; we have

Z
@B.z0;�/

�.z/ ^ !.z/ D n

Z
B.z0;�/

!.z/ ^ !.z/ :

Proof. Notice that d�.z/ D @�.z/ D n!.z/. Therefore by Stokes’s theorem,

Z
@B.z0;�/

�.z/ ^ !.z/ D
Z
B.z0;�/

d Œ�.z/ ^ !.z/
:

Of course the expression in Œ 
 is saturated in dz’s so, in the decomposition d D
@C @; only the term @ will not die. Thus the last line equals

Z
B.z0;�/

Œ@.�.z//
 ^ !.z/ D n

Z
B.z0;�/

!.z/ ^ !.z/:

Remark 1.2.4. Notice that, by change of variables,

Z
B.z0;�/

!.z/ ^ !.z/ D
Z
B.0;�/

!.z/ ^ !.z/

D �2n
Z
B.0;1/

!.z/ ^ !.z/:

A straightforward calculation shows that

Z
B.0;1/

!.z/ ^ !.z/

D .	1/q.n/ � .2i/n � (volume of the unit ball in C
n 
 R

2n);

where q.n/ D Œn.n 	 1/
=2: We denote the value of this integral by W.n/.
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Theorem 1.2.5 (Bochner–Martinelli). Let� � C
n be a bounded domain with C1

boundary. Let f 2 C1.�/: Then, for any z 2 �; we have

f .z/ D 1

nW.n/

Z
@�

f .�/�.� 	 z/ ^ !.�/
j� 	 zj2n

	 1

nW.n/

Z
�

@f .�/

j� 	 zj2n ^ �.� 	 z/ ^ !.�/:

Proof. Fix z 2 �: We apply Stokes’s theorem to the form

Mz.�/ � f .�/�.� 	 z/ ^ !.�/
j� 	 zj2n

on the domain�z;� � �nB.z; �/;where � > 0 is chosen so small thatB.z; �/ � �:

Note that Stokes’s theorem does not apply to forms that have a singularity; thus we
may not apply the theorem to Lz on any domain that contains the point z in either
its interior or its boundary. This observation helps to dictate the form of the domain
�z;� : As the proof develops, we shall see that it also helps to determine the outcome
of our calculation.

Notice that

@.�z;�/ D @� [ @B.z; �/

but that the two pieces are equipped with opposite orientations.
Thus by Stokes,

Z
@�

Mz.�/ 	
Z
@B.z;�/

Mz.�/ D
Z
@�z;�

Mz.�/

D
Z
�z;�

d�.Mz.�// : (1.2.5.1)

Notice that we consider z to be fixed and � to be the variable. Now

d�Mz.�/ D @�Mz.�/

D @f .�/ ^ �.� 	 z/ ^ !.�/
j� 	 zj2n

C f .�/ �
2
4 nX
jD1

@

@�j

 
�j 	 zj
j� 	 zj2n

!3
5!.�/ ^ !.�/ : (1.2.5.2)
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Observing that

@

@�j

 
�j 	 zj
j� 	 zj2n

!
D 1

j� 	 zj2n 	 n j�j 	 zj j2
j� 	 zj2nC2 ;

we find that the second term on the far right of (1.2.5.2) dies and we have

d�Mz.�/ D @f .�/ ^ �.� 	 z/ ^ !.�/
j� 	 zj2n :

Substituting this identity into (1.2.5.1) yields

Z
@�

Mz.�/ 	
Z
@B.z;�/

Mz.�/ D
Z
�z;�

@f .�/ ^ �.� 	 z/ ^ !.�/
j� 	 zj2n : (1.2.5.3)

Next we remark that

Z
@B.z;�/

Mz.�/ D f .z/
Z
@B.z;�/

�.� 	 z/ ^ !.�/
j� 	 zj2n

C
Z
@B.z;�/

.f .�/ 	 f .z// �.� 	 z/ ^ !.�/
j� 	 zj2n

� T1 C T2 : (1.2.5.4)

Since jf .�/	f .z/j � C j�	 zj (and since each term of �.�	 z/ has a factor of some
�j	zj ), it follows that the integrand of T2 is of sizeO.j�	zj/�2nC2 
 ��2nC2: Since
the surface over which the integration is performed has area 
 �2n�1; it follows that
T2 ! 0 as � ! 0C:

By Lemma 1.2.3 and the remark following, we also have

T1 D ��2nf .z/
Z
@B.z;�/

�.� 	 z/ ^ !.�/

D n��2nf .z/
Z
B.0;�/

!.�/ ^ !.�/

D nW.n/f .z/ : (1.2.5.5)

Finally, (1.2.5.3)–(1.2.5.5) yield that

�Z
@�

Mz.�/

�
	 nW.n/f .z/C o.1/ D

Z
�z;�

@f .�/ ^
"
�.� 	 z/

j� 	 zj2n
#

^ !.�/ :
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Since
ˇ̌
ˇ̌
ˇ
�.� 	 z/

j� 	 zj2n
ˇ̌
ˇ̌
ˇ D O.j� 	 zj�2nC1/ ;

the last integral is absolutely convergent as � ! 0C (remember that @f is bounded).
Thus we finally have

f .z/ D 1

nW.n/

Z
@�

Lz.�/ 	 1

nW.n/

Z
�

@f .�/ ^ �.� 	 z/

j� 	 zj2n ^ !.�/ :

This is the Bochner–Martinelli formula.

Remark 1.2.6. We see that the Bochner–Martinelli formula is a quintessential
example of a constructible integral formula. The kernel is quite explicit, and it is
the same for all domains. For the Bergman kernel, and for other canonical kernels
that we shall see below, this latter property does not hold.

We note that the classical Cauchy integral formula in one complex variable is an
immediate consequence of our new Bochner–Martinelli formula.

Corollary 1.2.7. If � � C
n is bounded and has C1 boundary and if f 2 C1.�/

and @f D 0 on �; then

f .z/ D 1

nW.n/

Z
@�

f .�/�.� 	 z/

j� 	 zj2n ^ !.�/: (1.2.7.1)

Corollary 1.2.8. In complex dimension 1, the last corollary says that

f .z/ D 1

2�i

I
@�

f .�/

� 	 z
d�:

Corollary 1.2.7 is particularly interesting. Like the classical Cauchy formula,
it gives a constructible integral reproducing formula that is the same on all
domains. Unlike the classical Cauchy formula, its kernel is not holomorphic in
the free variable z. This makes the Bochner–Martinelli formula of limited utility
in constructing holomorphic functions.

We note that Corollary 1.2.7 holds for broader classes of holomorphic functions—
such as the Hardy classes. One sees this by a simple limiting argument. See our
discussion of H2 below.

Now we turn to the development of the Szegő theory. Let� be a bounded domain
in C or Cn with C1 boundary. Define H2.�/ as above. If z 2 � is fixed, then, by
inspection of the formula in Corollary 1.2.7 and the Schwarz inequality,
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jf .z/j � C � kf kH2.�/ :

Thus we see that H2.�/ is a Hilbert space with reproducing kernel. A construction
exactly like that for the Bergman kernel gives a new kernel called the Szegő kernel.
We denote it by S.z; �/.

Using the Szegő theory analogue of Proposition 1.1.7, we can actually calculate
the Szegő kernel on the disc. We first note that fzj g1

jD0 forms a basis for the
Hilbert space H2.D/. This follows from the standard theory of power series for
holomorphic functions on D. It is orthogonal by parity. It is complete by the
uniqueness of the power series expansion. With a simple calculation, we can
normalize the basis to the complete orthonormal basis f.1=p2�/zj g1

jD0. Thus we
see that

S.z; �/ D
1X
jD0

1

2�
zj �

j D 1

2�
� 1

1 	 z � � :

Now it is instructive to write out the Szegő integral for a function in A.D/:

f .z/ D
Z 2�

0

f .ei� / � 1
2�

� 1

1 	 z � e�i� d�

D 1

2�i

Z 2�

0

f .ei� /

ei� 	 z
� iei� d�

D 1

2�i

I
@D

f .�/

� 	 z
d�:

Thus we see that the canonical Szegő integral formula is in fact nothing other than
the constructive Cauchy integral formula. But only on the disc!

We conclude this section by noting that the integral

Sg.z/ D
Z
@�

S.z; �/g.�/ d�

defines a projection from L2.@�/ to H2.�/. This is because the mapping is self-
adjoint, idempotent, and fixesH2. We call this mapping the Szegő projection. (Note
that the Bergman projection is constructed similarly.)

Let f�j g1
jD1 be any complete, orthonormal basis for H2.@�/: Define

S 0.z; �/ D
1X
jD1

�j .z/�j .�/ ; z; � 2 �:

For convenience we tacitly identify here each function with its Poisson extension
to the interior of the domain. Then, for K � � compact, the series defining S 0
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converges uniformly onK�K: By a Riesz–Fischer argument, S 0.�; �/ is the Poisson
integral of an element ofH2.@�/ and S 0.z; �/ is the conjugate of the Poisson integral
of an element ofH2.@�/: So S 0 extends to .���/[.���/;where it is understood
that all functions on the boundary are defined only almost everywhere. The kernel
S 0 is conjugate symmetric. Also, by Riesz–Fischer theory, S 0 reproduces H2.@�/:

Since the Szegő kernel is unique, it follows that S D S 0:
The Poisson–Szegő kernel is obtained by a formal procedure from the Szegő

kernel: This procedure manufactures a positive reproducing kernel from one that is
not necessarily positive. The origin of this kernel may be found in [HUA, Chap. 3].
Note in passing that, just as we argued for the Bergman kernel in the last section,
S.z; z/ is never 0 when z 2 �:
Proposition 1.2.9. Define

P.z; �/ D jS.z; �/j2
S.z; z/

; z 2 �; � 2 @�:

Then, for any f 2 A.�/ and z 2 �, it holds that

f .z/ D
Z
@�

f .�/P.z; �/d�.�/:

Proof. Fix z 2 � and f 2 A.�/ and define

u.�/ D f .�/
S.z; �/

S.z; z/
; � 2 @�:

Then u 2 H2.@�/ hence

f .z/ D u.z/ D
Z
@�

S.z; �/u.�/d�.�/

D
Z
@�

P.z; �/f .�/d�.�/:

This is the desired formula.

Remark 1.2.10. In passing to the Poisson–Szegő kernel, we gain the advantage of
positivity of the kernel (for more on this circle of ideas, see [KRA1, Chap. 8] and
also [KAT, Chap. 1]). However, we lose something in that P.z; �/ is no longer
holomorphic in the z variable nor conjugate holomorphic in the � variable. The
literature on this kernel is rather sparse and there are many unresolved questions.
The paper [KRA2] discusses some of the mapping properties of the Poisson–Szegő
kernel. See also the more recent paper [KRA11]. It is an interesting historical fact
that the Poisson–Szegő kernel was invented by Hua in [HUA], though he did not
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give the kernel this name. We say more about the Poisson–Szegő kernel in Sects. 3.2
and 3.3.

As an exercise, use the paradigm of Proposition 1.2.9 to construct a positive
kernel from the Cauchy kernel on the disc (be sure to first change notation in the
usual Cauchy formula so that it is written in terms of arc length measure on the
boundary). What familiar kernel results?

Like the Bergman kernel, the Szegő and Poisson–Szegő kernels can almost
never be explicitly computed. They can be calculated asymptotically in a number
of important instances, however (see Fefferman [FEF1, Part I], Boutet de Monvel
and Sjöstrand [BOS]). We will give explicit formulas for these kernels on the ball.
The computations are similar in spirit to those in Sect. 1.1.2; fortunately, we may
capitalize on much of the work done there.

Lemma 1.2.11. The functions fz˛g; where ˛ ranges over multi-indices, are pair-
wise orthogonal and span H2.@B/:

Proof. The orthogonality follows from symmetry considerations. For the complete-
ness, notice that it suffices to see that the span of fz˛g is dense in A.B/ in the
uniform topology on the boundary. By the Stone–Weierstrass theorem, the closed
algebra generated by fz˛g and fz˛g is all of C.@B/: But the monomials z˛; ˛ 6D 0;

are orthogonal to A.B/ (use the power series expansion about the origin to see this).
The claimed density follows.

Lemma 1.2.12. Let 1 D .1; 0; : : : ; 0/: Then

S.z; 1/ D .n 	 1/Š
2�n

1

.1 	 z1/n
:

Proof. We have that

S.z; 1/ D
X
˛

z˛ � 1˛

kz˛1k2
L2.@B/

D
1X
kD0

zk1
�.k/

D 1

2�n

1X
kD0

zk1.k C n 	 1/Š
kŠ

D .n 	 1/Š
2�n

1X
kD0

�
k C n 	 1
n 	 1

�
zk1

D .n 	 1/Š
2�n

1

.1 	 z1/n
:
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Lemma 1.2.13. Let � be a unitary rotation on C
n: For any z 2 B; � 2 @B; we have

that S.z; �/ D S.�z; ��/:

Proof. This is a standard change of variables argument and we omit it.

Theorem 1.2.14. The Szegő kernel for the ball is

S.z; �/ D .n 	 1/Š
2�n

1

.1 	 z � �/n :

Proof. Let z 2 B be arbitrary. Let � be the unique unitary rotation such that �z is a
multiple of 1. Then, by 1.2.13,

S.z; �/ D S.��11; �/

D S.1; ��/ D S.��; 1/

D .n 	 1/Š
2�n

1�
1 	 .��/ � 1

�n

D .n 	 1/Š
2�n

1�
1 	 � � .��11/

�n

D .n 	 1/Š
2�n

1

.1 	 z � �/n :

Corollary 1.2.15. The Poisson–Szegő kernel for the ball is

P.z; �/ D .n 	 1/Š
2�n

.1 	 jzj2/n
j1 	 z � �j2n :

Exercise for the Reader: Calculate the Szegő and Poisson–Szegő kernel for the
polydisc.

Let us now review some of our key ideas. We let � be a bounded domain in
C or Cn. Let L2.�/ be the square-integrable functions on � (with respect to the
ordinary Lebesgue measure), and let A2.�/ � L2.�/ be the subspace consisting
of the holomorphic functions. This last space is known as the Bergman space. Then
A2 is a closed, Hilbert subspace of L2. Thus we may consider the projection

P W L2.�/ ! A2.�/ :

It is well known that this projection mapping is given by an integration kernel
K.z; �/ which is called the Bergman kernel (see [KRA1, Chap. 1] for details in this
matter). As an instance, the Bergman kernel for �, the unit disc D in the complex
plane is given by
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KD.z; �/ D 1

�
� 1

.1 	 z � �/2 : (1.2.16)

Of particular interest for us is the obvious fact that this K is smooth on D �D nD,
where D is the boundary diagonal.

We might also note that the Bergman kernel for the unit ball B in C
n is given by

the formula

KB.�; �/ D nŠ

�n
� 1

.1 	 � � �/nC1 :

Again, one may see by inspection that K is smooth on B � B n D.
Kerzman [KER2] has shown that a similar result is true on any smoothly

bounded, strictly pseudoconvex domain: The Bergman kernel is smooth on the
product of the closures less the boundary diagonal. In fact we now know (see the
remark at the end of Kerzman’s paper) that the result holds on any domain for which
the @-Neumann operator N is known to be pseudolocal (see [KER2] and [BEL3]
for an explication of these ideas). This just means that N' is smooth wherever ' is
smooth.

To see this, note that if f 2 A2.�/ and z 2 �, then

f .z/ D hf; ızi
D hPf; ızi
D hf; P ızi:

Here, of course, ız is the Dirac delta mass at z. It follows that

K.z; �/ D P.ız/: (1.2.17)

Here P is the Bergman projection. Of course P.ız/ is an element of A2.�/, so it
is certainly smooth on �. We are interested in the behavior of this function (of the
variables z and �) as z and � tend to the boundary.

Now the well-known formula of Kohn, which we prove in Sect. 6.6, for the
Bergman projection P is given by

P D I 	 @�
N@: (1.2.18)

Here N is the @-Neumann operator.
To be more specific, we can combine (1.2.17) and (1.2.18) to see that

K.z; �/ D ı� 	 @�
N@ı�: (1.2.19)
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Of course @ and @
�

are classical partial differential operators. So it is certainly the
case that wherever a function ' is smooth, then also @' and @

�
' are smooth. The

pseudolocality of N means precisely that N is smooth wherever  is smooth. All
in all then, line (1.2.19) tells us that if z is fixed inside �, then K.z; �/ is smooth
up to the boundary in the � variable (just because ız is). The estimates that come
with the pseudolocality of N (see either [FOK] or [KRA4, Chap. 7] for the strictly
pseudoconvex case) tell us further that, as � ! @� and if z stays in a compact subset
of the closure that is bounded from �, then K is still smooth.

With all this information in hand, it is a matter of interest to know for which
domains the Bergman kernel will have a singularity when the two variables approach
the same boundary point. In those circumstances the question of boundedness of the
Bergman projection on various Lp and other spaces has a hope of being tractable,
and the study of Condition R is accessible. But in fact Ligocka [LIG1] has shown
that this contention fails on the Diederich–Fornaess worm domain (see [DIF1] as
well as [CHS] and [KRP1]). Of course it is known (see [KRP2] or [CHS]) that the
worm is bounded, pseudoconvex, and has smooth boundary. We treat the worm in
Chap. 6.

We note in passing that the Bergman kernel for the bidisc does not satisfy the
condition described in the last paragraph (of course the bidisc does not have smooth
boundary). One might speculate that a similar failure occurs on a smoothly bounded,
convex domain in C2 which has an analytic disc in the boundary.

Our purpose in the next sections is to show that the assertions being discussed
here fail dramatically on the disc D � C when one considers the reproducing
kernels for certain closed subspaces of A2.D/.

1.3 Formal Ideas of Aronszajn

One of the first canonical integral formulas ever created was that of Bergman
[BER1] and [BER2]. We shall present the Bergman idea in the context of a more
general construction due to Nachman Aronszajn [ARO]. This is the idea of a Hilbert
space with reproducing kernel. Fortunately Aronszajn’s idea also entails the Szegő
kernel and several other important reproducing kernels.

Definition 1.3.1. Let X be any set and let H be a Hilbert space of complex-valued
functions on X . We say that H is a Hilbert space with reproducing kernel if, for
each x 2 X , the linear (point evaluation) map of the form

Lx W H 	! C

f 7	! f .x/;

is continuous. We write this as

jf .x/j � C � kf kH: (1.3.1.1)
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In this circumstance, the classical Riesz representation theorem (see [KRA14, Chap.
3]) tells us that, for each x 2 X , there is a unique element kx 2 H such that

f .x/ D hf; kxi 8f 2 H: (1.3.1.2)

We then define a function

K W X �X ! C

by the formula

K.x; y/ � kx.y/ :

The function K is the reproducing kernel for the Hilbert space H.

We see that K is uniquely determined by H because, again by the Riesz
representation theorem, the element kx for each x 2 H is unique.

We know from our earlier discussion that, if f'j g is a complete orthonormal basis
for the Bergman space, then

K.x; y/ D
1X
jD1

'j .x/'j .y/ :

Here the convergence is in the Hilbert space topology in each variable. And in fact
the fundamental property (1.3.1.1) of a Hilbert space with reproducing kernel shows
that the convergence is uniform on compact subsets of X �X .

1.4 A New Bergman Basis

We do our work in this section on the unit disc D in the complex plane C.
Of course an orthogonal basis for the Bergman space of the disc D is given

by f�j g1
jD0. Calculating the L2 norm of each of these elements, we find that an

orthonormal basis for A2.D/ is

'j .�/ D
p
j C 1p
�

� �j ; j D 0; 1; 2; : : : :

The basis is seen to be complete just by the theory of power series. Now it is a
standard fact (see Sect. 1.1.2) that the Bergman kernel can be constructed from such
a basis by the formula
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K.z; �/ D
1X
jD0

'j .z/ � 'j .�/ :

This series converges, uniformly on compact subsets of D �D, to the kernel

K.z; �/ D 1

�
� 1

.1 	 z � �/2 :

But now let us consider2 the subspace X of A2.D/ generated by the basis
elements '2j .�/, j D 0; 1; 2; : : : . This is certainly a closed subspace of A2.D/,
and its Bergman kernel is given by

1X
jD0

'2j .z/ � '2j .�/: (1.4.1)

Let us calculate explicitly the sum in (1.4.1). It is given by

1X
jD0

2j C 1

�
z2j � �2j :

We may sum this series by examining the auxiliary expression

1X
jD0

2j C 1

�
˛2j D d

d˛

2
4 1
�

�
1X
jD0

˛2jC1
3
5

D d

d˛

�
1

�
� ˛ � 1

1 	 ˛2
�

D 1

�
� ˛2 C 1

.1 	 ˛2/2 :

We conclude that the Bergman kernel KX for X is given by

KX .z; �/ D 1

�
� .z�/2 C 1

.1 	 .z�/2/2 : (1.4.2)

The notable fact is thatKX blows up either when z �� tends to 1 or when z �� tends
to 	1. In other words, KX blows up either when z and � tend to the same boundary
point or when z and � tend to antipodal boundary points.

2The discussion here is based on unpublished work [BKP] of Boas, Krantz, and Peloso.
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A companion result is obtained when one considers instead the space Y generated
by the basis f'2jC1g, j D 0; 1; 2; : : : . Its Bergman kernel is given by

1X
jD0

'2jC1.z/ � '2jC1.�/: (1.4.3)

Let us calculate explicitly the sum in (1.4.3). It is given by

1X
jD0

2j C 2

�
z2jC1 � �2jC1 :

We may sum this series by examining the auxiliary expression

1X
jD0

2j C 2

�
˛2jC1 D d

d˛

2
4 1
�

�
1X
jD0

˛2jC2
3
5

D d

d˛

�
1

�
� ˛2 � 1

1 	 ˛2
�

D 1

�
� 2˛

.1 	 ˛2/2 :

We conclude that the Bergman kernel KY for Y is given by

KY.z; �/ D 1

�
� 2z�

.1 	 .z�/2/2 : (1.4.4)

Again, this new Bergman kernel has boundary singularities either when z and � tend
to the same boundary point or when z and � tend to antipodal boundary points.

It is notable that

KX .z; �/CKY.z; �/ D 1

�
� 1

.1 	 z � �/2 D KD.z; �/ :

It may be noted that the even part (in the z variable) of the classical Bergman
kernel for the disc D is

1

�
� .z�/2 C 1

.1 	 .z�/2/2 :

This is precisely the kernel that we found for the Bergman space X generated by
the basis of monomials with even index. Likewise the odd part (in the z variable) of
the classical Bergman kernel for the disc D is
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1

�
� 2z�

.1 	 .z�/2/2 :

This is precisely the kernel that we found for the Bergman space Y generated by the
basis of monomials with odd index.

1.5 Further Examples

Of course one is by no means restricted to doing analysis modulo 2. One could
examine the Bergman space generated by '0, '3, '6, etc., and calculate the
corresponding Bergman kernel. We shall not do so here, but simply note that the
resulting kernel has boundary singularities at the third roots of unity. In other words,
there are three boundary singularities.

A similar result obtains if one considers the Bergman kernel for the space
generated by 'jm, where m is any fixed positive integer. In that case, there are
boundary singularities at the mth roots of unity.

A rather more dramatic example is obtained when we consider the space Z
generated by the basis f'2j g, j D 0; 1; 2; : : : . The corresponding Bergman kernel is

KZ.z; �/ D
1X
jD0

2j C 1

�
z2
j � �2j D

1X
jD0

2j C 1

�
.z � �/2j : :

We shall not sum this series explicitly. But we instead analyze the auxiliary
holomorphic function

˚.˛/ D
1X
jD0

2j C 1

�
˛2

j

: (1.5.1)

The sequence of exponents is lacunary, and the radius of convergence of the series
is 1. Thus the Hadamard gap theorem applies, and we see that the series in (1.5.1)
defines a holomorphic function with a singularity at every boundary point of the
disc. In other words, the holomorphic functions ˚ does not analytically continue
past any boundary point. From this we conclude that the kernel KZ has boundary
singularities at every boundary point of the unit disc D.

If we consider the complementary basis '1, '3, '5, '6, '7, etc., and the Bergman
kernel K 0

Z associated to the space it generates, then we must conclude that it, too,
has boundary singularities at every boundary point. This is true because

KZ CK 0
Z D KD :

What is particularly interesting is that the first basis in this example (the one with a
lacunary sequence of indices) is quite sparse, while the second is not.
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We conclude this discussion by briefly treating an example in which the selected
basis and also its complementary basis are lacunary in a certain sense but have
similar density properties. Namely, let

J1 D
�
0 ; 2 ; 5; 6; 7; 8 ; 17; 18; : : : ; 32 ; 65; 66; : : : ; : : : ; 128; : : :

�

and

J2 D
�
1 ; 3; 4 ; 9; 10; : : : ; 16 ; 33; 34; : : : ; 64 ; : : :

�
:

We see that J1 and J2 are disjoint and their union is all the nonnegative integers.
Now the Bergman kernel for the space generated by J1 is given by

1X
jD1

22jC1X
`D22jC1

`C 1

�
z`�

`
:

The inner sum (we omit the details), with ˛ D z � �, may be calculated to be

1

�
� .2

2jC1C2/˛22jC1C2�.22jC2/˛22j C2�.22jC1C2/˛22jC1C1C.22jC2/˛22j C1�˛22jC1C2C˛22j C2

.˛�1/2 :

Hence, the kernel is

1X
jD1

1

�
� .2

2jC1 C 2/.z�/2
2jC1C2 	 .22j C 2/.z�/2

2jC2 	 .22jC1 C 2/.z�/2
2jC1C1

..z�/ 	 1/2

C .22j C 2/.z�/2
2jC1 	 .z�/22jC1C2 C .z�/2

2jC2

..z�/ 	 1/2 :

The problem of calculating the sum of this series appears to be intractable. But
there is reason to believe that the only singularity is at 1 2 @D. The analysis for the
kernel for the basis J2 would be similar.

1.6 A Real Bergman Space

The space h2.D/ of square-integrable harmonic functions on the discD is a Hilbert
space with reproducing kernel in the sense of Aronszajn (see [ARO]). In particular,
if K � D is compact, then there is a constant C D C.K/ so that if f 2 h2.D/,
then
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sup
z2K

jf .z/j � C � kf kh2 :

As a result, there is a “Bergman kernel” for this space.
It may be noted that a basis for h2.D/ consists of

f�j g1
jD0

[
f�j g1

jD1:

The Bergman kernel for h2 is easily calculated; it is essentially a derivative of the
usual Poisson kernel.

If we instead calculate the Bergman kernel for the space generated just by f�j g
or for the space generated just by f�j g, then we obtain the usual Bergman kernel or
(up to an additive constant) the conjugate of the usual Bergman kernel.

On the other hand, one might consider the space h2.D/ of harmonic functions u
on the disc that satisfy

sup
0<r<1

Z 2�

0

ju.rei� /j2 d� < 1:

This is analogous to the Hardy space, but now we are focusing on harmonic
functions. It is easy to verify that this is a Hilbert space with reproducing kernel.
Calculating the kernel, one finds that it is the classical Poisson kernel. Given
Stokes’s theorem, it is no surprise that the kernel for h2 is a derivative of the kernel
for h2.

One should note that, in this example, the Bergman kernel for a subspace does not
have extra singularities. All the kernels being discussed here have just the classical
singularity at 1.

1.7 The Behavior of the Singularity in a General Setting

In this section we build (at least philosophically) on the earlier material and prove
the next result. We note that, in this theorem, “boundary singularity” for the
Bergman kernel means a boundary point of the unit disc D � C which has no
neighborhood to which the Bergman kernel directly analytically continues as z; �
both approach the point. In particular, “boundary singularity” does not necessarily
mean that the kernel is blowing up at the indicated point.

Theorem 1.7.1. Let ZC denote the collection of nonnegative integers. Write

ZC D I1 [ I2 ;

where I1 \ I2 D ; and each of I1, I2 is an infinite set.
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Let B1 be the Bergman space on the unit disc D generated by the basis I1 and
B2 the Bergman space on D generated by the basis I2. Correspondingly, let K1 be
the Bergman kernel for B1 and K2 the Bergman kernel for B2. Then K1, K2 each
have more than one boundary singularity.

Proof. Let f'j g1
jD1 be a basis for B1. Then the corresponding Bergman kernel is

K1.z; �/ D
1X
jD1

'j .z/ � 'j .�/ :

In particular, we see immediately that the kernel depends on z � �. Since we are
considering f'j g as a subset of the particular basis fp.j C 1/=��j g, we know
that the Bergman kernel for B1 is a sum of some of the terms .j C 1/.z�/j (for
convenience we omit the factor of 1=�). Thus it suffices for us to study the single-
variable power series

X
j

.j C 1/tj :

Here the sum is taken over some, but not all, of the j . Also t is a complex variable.
Certainly a series of this form has radius of convergence 1 and has a singularity at
the boundary point 1. This corresponds to the singularity of the Bergman kernel on
the boundary diagonal. The question that we must study is whether this one-variable
power series has any other singular points on the boundary of D.

Note that the derivative or the integral of the series has the very same singulari-
ties. So we may as well study the series

X
j

t j ;

where the sum is taken over some of the j , but not all of the j .
Now a classical result of Szegő (see [SZE]) comes into play. This result says that

a power series with finitely many distinct coefficients (in our case the coefficients
are all either 0 or 1) has either the boundary circle as its natural boundary (meaning
that every boundary point is singular) or else the series sums to a rational function
(whose Maclaurin series coefficients form a sequence that is eventually periodic).
We know from our earlier calculations that, in the second case, there are polynomials
p and q such that the series represents a rational function of the form

p.t/C q.t/

1 	 tm :

Here m is the period of the coefficient sequence.
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Translating these ideas back into the language of z and �, we find that we have
the following two cases for our Bergman kernel:

(1) The subspace B1 of the Bergman space has a basis of monomials with an
eventually periodic structure. In this case, the kernel has, for each fixed z 2 @D,
singularities at finitely many values (more than one) of � 2 @D.

(2) Our subspace of the Bergman space has a basis of monomials that lacks an
eventually periodic structure. In this case, the kernel function is singular when
z, � approach two arbitrary (and, in general, distinct) boundary points.

The second case here holds in particular for either I1 or I2 when the set I1 is
lacunary as in Sect. 1.4. We conclude by noting that the results of this section and
the last are unpublished work of Boas, Krantz, and Peloso.

1.8 The Annulus

Let us first consider the Bergman kernel on the domain

D0 D f� 2 C W j�j > 1g :

One may either utilize the transformation formula

K�1.z; �/ D ˚ 0.z/ �K�2.˚.z/; ˚.�// � ˚.�/

for a conformal mapping ˚ W �1 ! �2 or else exploit the fact that if f j g1
jD1 is a

complete orthonormal basis for the Bergman space on �2, then the set f. ı ˚/ �
˚ 0g1

jD1 is a complete orthonormal basis for the Bergman space on �1. By either

means, with the mapping ˚.�/ D 1=� from cD to D, we find that the Bergman
kernel for the complement of the closed unit disc D0 is

KD0.z; �/ D 1

�

1

.1 	 z�/2
:

We note that the indicated calculations show that a complete orthonormal basis
for the Bergman space on D0 is f1=�j g1

jD2. Now calculations just like those in
Sect. 1.5 show that if we let I1 D f0; 2; 4; 6; : : : g and I2 the complementary set, then
the Bergman kernels corresponding to these two bases each have two singularities
in the boundary (at 1 and 	1).

Now we may consider the situation on the annulus

A D f� 2 C W 1=2 < j�j < 2g :
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Bergman [BER2] has shown that an explicit formula for the Bergman kernel on A
would entail elliptic functions. But we can derive an approximate formula that is
good enough for our purposes as follows:

Note that f�j g1
jD�1 is an orthogonal basis for A2.A/. Moreover, a straight-

forward calculation shows that

k�j kA2.A/ D
r

�

j C 1
�
r
24jC4 	 1
22jC2 ; j ¤ 	1

and

k��1kA2.A/ D p
2� �plog 4 :

Thus the Bergman kernel for the annulus A is

KA.z; �/ D 1

2� � log 4
z�1�

�1

C
X
j¤�1

j C 1

�

22jC2

24jC4 	 1 zj �
j
:

The usual error analysis shows then that

1X
jD0

j C 1

�

22jC2

24jC4 	 1 zj �
j D

1X
jD0

j C 1

�

22jC2

24jC4 zj �
j C E.z; �/ ;

where E is a bounded error term with bounded derivatives of all orders.
An analysis of the terms with index less than or equal to 	2 gives that

�2X
jD�1

j C 1

�
� 22jC2

24jC4 	 1 zj �
j D

1X
jD2

j 	 1
�

� 22j�2

24j�4 	 1 z�j ��j C F ;

where F is an error term as usual.
These sums are straightforward to calculate, and we find that the Bergman kernel

for the annulus A is given by

KA.z; �/ D 1

2� log 4
z�1�

�1

C 4

�
� 1

.4 	 z � �/2 C 4

�
� 1

.1 	 4z � �/2 C G.z; �/ ;

where G is an error term. Notice that the second term reflects the outer boundary of
the annulus and the third term reflects the inner boundary.

It is easy to see from these calculations that, if we were to consider the Bergman
space on the annulus corresponding to just the basis elements with even index y,
then the resulting kernel would have two singularities on the outer boundary of the
annulus and two singularities on the inner boundary. Refer to [KRA3] for more on
these phenomena.
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1.9 A Direct Connection Between
the Bergman and Szegő Kernels

1.9.1 Introduction

Two of the most classical and well-established reproducing formulas in complex
analysis are those of S. Bergman and G. Szegő. The first of these is a formula for
the Bergman space, and the associated integral lives on the interior of the domain in
question. The latter of these is a formula for the Hardy space, and the associated
integral lives on the boundary of the domain. For formal reasons, the Bergman
integral gives rise to a projection from L2.�/ to A2.�/ (the Bergman space);
likewise, the Szegő integral gives rise to a projection from L2.@�/ to H2.@�/ (the
Hardy space).

Since both of the artifacts in question here are canonical, it is natural to suspect
that there is some relationship between the two integral formulas. After all, they
both reproduce functions that are continuous on the closure of the domain and
holomorphic on the interior. In the present section we establish such a connection—
very explicitly—on a variety of domains in C

1 and C
n. This is done by way of

a moderately subtle calculation using Stokes’s theorem. The calculation itself has
some intrinsic interest, but the main point is the relationship between the canonical
integrals and the associated projections. See [KRA15] for the details of these ideas.

In separate calculations we treat the situation on the disc D, the unit ball B , and
on a strongly pseudoconvex domain �. While the first two calculations are very
explicit, in some sense it is the third of these calculations which is most natural and
most satisfying.

It is a pleasure to thank Jürgen Leiterer, who contributed a number of useful ideas
to these calculations.

1.9.2 The Case of the Disc

Let D be the unit disc in C. In this context, the Szegő kernel is

S.z; �/ D 1

2�
� 1

1 	 z � �
and the Bergman kernel is

K.z; �/ D 1

�
� 1

.1 	 z � �/2 :

Take f to be real analytic on a neighborhood of D. Now we can calculate
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1

2�

Z
@D

f .�/S.z; �/d�.�/ D 1

2�

Z
@D

f .�/ � 1

1 	 z�

h
�d� 	 �d�

i

2i

D 1

4�i

Z
@D

f .�/�

1 	 z � � d� 	 1

4�i

Z
@D

f .�/�

1 	 z � � d�

.Stokes/D 1

4�i

Z Z

D

f .�/

1 	 z � � d� ^ d� C 1

4�i

Z Z

D

f .�/�z

.1 	 z � �/2 d� ^ d�

	 1

4�i

Z Z

D

@.f � �/=@�
1 	 z � � d� ^ d� C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D 1

4�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

f .�/z�

.1 	 z � �/2 d� ^ d�

C 1

4�i

Z Z

D

f .�/�z

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

@.f � �/=@�
1 	 z � � d� ^ d�

C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D 1

4�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

@.f � �/=@�
1 	 z � � d� ^ d�

C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D 1

4�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

	 1

4�i

Z Z

D

f .�/

1 	 z � � d� ^ d� C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D 1

4�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

	 1

4�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� C 1

4�i

Z Z

D

f .�/z�

.1 	 z � �/2 d� ^ d�
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C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D 1

2�i

Z Z

D

f .�/

.1 	 z � �/2 d� ^ d� 	 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

C 1

4�i

Z Z

D

f .�/z�

.1 	 z � �/2 d� ^ d� C 1

4�i

Z Z

D

@f=@� � �
1 	 z � � d� ^ d�

D A 	 B C C CD :

CertainlyA D R
D
f .�/K.z; �/ dA.�/, whereK is the Bergman kernel of the disc.

So this is the Bergman projection. Now we shall analyze the terms 	B CC CD to
see how the Szegő kernel differs from the Bergman kernel. We shall determine that,
for certain monomials in a basis for the Bergman (Szegő) space, the sum of these
three terms is zero. While for others it is not. In the latter case the difference will be
controllable.

First we consider a monomial f .�/ D �k�
m

with k D 0; 1; : : : , m D 1; 2; : : : ,
and k < m. In this case,

Sf .z/ D
Z
@D

f .�/S.z; �/ d�.�/

D
Z
@D

�k�
m 1

1 	 z�
d�.�/:

Now we expand the Szegő kernel in a Neumann series, and, counting powers of �
and powers of �, we see immediately by parity that the integral is zero.

A similar calculation shows that, for these values of m and k, Bf .z/ � 0.
But matters are different when k � m. In this case, for the Szegő integral, we

may write �k�
m D �k�m � h.z/ for j�j D 1. Hence,

Sf .z/ D Sh.z/

D h.z/

D zk�m:

By contrast,

Bf .z/ D 1

2�i

Z
D

�k�
m

.1 	 z�/2
d� ^ d�
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D 1

2�i

Z
D

�k�
m

0
@ 1X
jD0

zj �
j

1
A
2

d� ^ d�

D 1

2�i

1X
j;`D0

zjC`
Z
D

�k�
mCjC`

d� ^ d�

D 1

2�i

X
0�j;`�k�m
jC`Dk�m

zk�m
Z
D

j�j2k d� ^ d�

D 1

2�i

X
0�j;`;�k�m
jC`Dk�m

zk�m 2�i

k C 1

D k 	mC 1

k C 1
zk�m

D
�
1 	 m

k C 1

�
zk�m:

Thus we see that

Sf .z/ 	 Bf .z/ D m

k C 1
zk�m :

As a consequence, if now f is a function that is real analytic in a neighborhood
of D, then we may write

f .�/ D
X

k�0;m>0
˛k;m�

k�
m
:

As a consequence of our calculations above, we then find that

Sf .z/ 	 Bf .z/ D
X

k�0;k�m

m

k C 1
zk�m :

This series of course converges uniformly on compact subsets of the open unit
disc D.

We treat the case of the Bergman and Szegő projections on the ball below.
Given the Fefferman’s asymptotic expansion for the Bergman kernel [FEF1] and

Boutet de Monvel–Sjöstrand’s asymptotic expansion for the Szegő kernel [BOS],
one would expect a like calculation (up to a controllable error term) on a smoothly
bounded, strongly pseudoconvex domain. Unfortunately we do not know enough
about the canonical kernels on domains of finite type to be able to predict what will
happen there. We explore the strongly pseudoconvex case below.
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In a more recent work, Chen and Fu [CHF] have explored some new comparisons
of the Bergman and Szegö kernels. A sample theorem is this:

Theorem 1.9.1. Let � � C
n be a pseudoconvex domain with C2 boundary.

Then

(1) For any 0 < a < 1, there exists a constant C > 0 such that

S.z; z/

K.z; z/
� Cı.z/j log ı.z/jn=a :

(2) If there is a neighborhood U of @�, a bounded, continuous plurisubharmonic
function ' on U \�, and a defining function � of� satisfying i@@' � i��1@@�
on U \ � as currents, then there exists constants 0 < a < 1 and C > 0 such
that

S.z; z/

K.z; z/
� Cı.z/j log ı.z/j�1=a :

These authors further show that, for a C2-bounded convex domain, the quotient
S=K is comparable to ı without any logarithmic factor.

The techniques used in the work of Chen and Fu are weighted estimates for the
@ operator (in the spirit of Hörmander’s work [HOR1]) and also an innovative use
of the Diederich–Fornæss index (see [DIF3]). We can say no more about the details
here.

We turn next to an examination of the situation on the unit ball B in C
n.

1.9.3 The Unit Ball in C
n

For simplicity we shall in fact restrict attention to complex dimension 2. In that
situation, the area measure d� on the boundary is given by

d� D 1

16

�
�1d�2^d�1^d�2	�2d�1^d�1^d�2C�1d�2^d�1^d�2	�2d�1^d�1^d�2

�
:

As a result, we have
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Now we may group together like terms to obtain

D 	 1

8�2

ZZZZ

B

f .�/

.1 	 z � �/3 d�1 ^ d�1 ^ d�2 ^ d�2

C 3

16�2

ZZZZ

B

f .�/ � .z � �/
.1 	 z � �/3 d�1 ^ d�1 ^ d�2 ^ d�2

C 1

32�2

ZZZZ

B

@f=@�1

.1 	 z � �/2 � �1 d�1 ^ d�2 ^ d�1 ^ d�2

	 1

32�2

ZZZZ

B

@f=@�2

.1 	 z � �/2 � �2 d�2 ^ d�1 ^ d�1 ^ d�2

C 1

32�2

ZZZZ

B

@f=@�1

.1 	 z � �/2 � �1 d�1 ^ d�2 ^ d�1 ^ d�2

	 1

32�2

ZZZZ

B

@f=@�2

.1 	 z � �/2 � �2 d�2 ^ d�1 ^ d�1 ^ d�2

D 	AC B C C 	D CE 	 F:

Now 	A is just the usual Bergman integral on the ball B in C
2. We can analyze

the other terms just as we did for the disc. As an instance, let us examine B . We take

f .�/ D �˛�
ˇ

, where ˛ and ˇ are multi-indices. Then we may write (ignoring
dimensionality constants which are of no interest)

B D
ZZZZ

B

f .�/ � .z � �/
.1 	 z � �/3 dV.�/

D
ZZZZ

B

.�˛�
ˇ
/.z � �/

0
@ 1X
jD0

.z � �/j
1
A
3

dV.�/:

And now we see by inspection that if ˇ � ˛, then the integral equals 0.
However, if ˇ < ˛, then the integral does not vanish. Take, for instance, the case

when f .�/ D �21�1. Then our integral becomes

ZZZZ

B

.�21�1/.z � �/
0
@ 1X
jD0

.z � �/j
1
A
3

dV D
ZZZZ

B

.�21�1/.z1�1/ � 1 dV;
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where we have used parity to see that most of the terms vanish. Now this last is

z1

ZZZZ

B

j�1j4 dV.�/ D �2

12
z1 :

The terms C , D, E, F are calculated similarly, and we find that the sum of these
error terms is a constant times z1. A similar calculation reveals that the Szegő
projection of this same f is a different constant times z1. So the situation is
completely analogous to the disc case.

1.9.4 Strongly Pseudoconvex Domains

We again, for simplicity, restrict attention to C
2. In the seminal paper [FEF1] and

[FEF2], Fefferman shows that, near a strongly pseudoconvex boundary point, the
Bergman kernel may be written (in suitable local coordinates) as

2

�2
� 1

.1 	 z � �/3 C E.z; �/ ;

where E is an error term of strictly lower order (in the sense of pseudodifferential
operators) than the Bergman kernel.

In the important paper [BOS], Boutet de Monvel and Sjöstrand show that, near a
strongly pseudoconvex boundary point, the Szegő kernel may be written (in suitable
local coordinates) as

1

2�2
� 1

.1 	 z � �/2 C F.z; �/ ;

where F is an error term of strictly lower order (in the sense of pseudodifferential
or Fourier integral operators) than the Szegő kernel.

We now take advantage of these two asymptotic expansions to say something
about the relationship between the Bergman and Szegő projections on a smoothly
bounded strongly pseudoconvex domain.

Now fix a smoothly bounded, strongly pseudoconvex domain � with defining
function � (see [KRA1] for this notion). Let U be a tubular neighborhood of @�,
and let V be a relatively compact subdomain ofU that is also a tubular neighborhood
of @�. Let 'j be a partition of unity that is supported inU and sums to be identically
1 on V . We assume that each 'j has support so small that both the Fefferman
and Boutet de Monvel–Sjöstrand expansions are valid on the support of 'j . Then
we write Z

@�

f .�/S.z; �/ d�.�/ D
ZZZ

@�

f .�/S.z; �/!.�/

D
X
j

ZZZ

@�

'j .�/f .�/S.z; �/!.�/;
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where ! is the differential form that is equivalent to area measure on the boundary.
And now, using Boutet de Monvel–Sjöstrand and using the notable lemma of
Fefferman [FEF1] and [FEF2] that says that a strongly pseudoconvex boundary
point is the ball up to fourth order, one can write each term of this last sum as

1

2�

ZZZ

@B

Q'j .�/f .�/ � 1

.1 	 z � �/2
�
�1d�2 ^ d�1 ^ d�2

	�2d�1 ^ d�1 ^ d�2 C �1d�2 ^ d�1 ^ d�2 	 �2d�1 ^ d�1 ^ d�2

�
C G;

where the error term G arises from approximating @� by @B , from approximating
the Szegő kernel S by the kernel for the ball, by applying a change of variable to
'j , and also by approximating ! by the differential form that we used on the ball.

Now we may carry out the calculations using Stokes’s theorem just as in the last
subsection to finally arrive at the assertion that the last integral equals

ZZZZ

B

QQ'j .�/ f .�/

.1 	 z � �/3 dV C H:

We cannot make the error term H disappear, but it is smoothly bounded hence
negligible. Finally, we can use the Fefferman asymptotic expansion to relate this last
integral to the Bergman projection integral on the strongly pseudoconvex domain�.

In summary, we have used Stokes’s theorem to relate the Szegő projection
integral on a smoothly bounded, strongly pseudoconvex domain to the Bergman
projection integral on that domain. In this context, we do not get a literal equality.
Instead we get an equality up to a controllable error term.

1.9.5 Concluding Remarks

Certainly one of the fundamental problems of the function theory of several complex
variables is to understand the canonical kernels in as much detail as possible. This
discussion is a contribution to that program.

1.10 Multiply Connected Domains

Now what about multiply connected domains? A useful result in [KRA3] shows the
following. Let � be smoothly bounded with connectivity k, and let S1, S2, . . . , Sk
be the boundary curves of �. Suppose that Sk bounds the unbounded component
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of the complement. Let �k be the bounded region bounded by Sk and let �j , j D
1; 2; : : : ; k 	 1 be the unbounded region bounded by Sj . Then, for z; � 2 �,

K�.z; �/ D K�1.z; �/CK�2.z; �/C � � � CK�k.z; �/C E.z; �/ ;

where E is a bounded function with bounded derivatives. See Sect. 1.14 below. Thus
K can be written as the sum of a Bergman kernel for a domain (namely, �k) that
is conformally equivalent to the disc plus Bergman kernels for domains which are
conformally equivalent to the complement of the closure of the disc (namely, �1,
. . . , �k�1). We already understand the Bergman kernels for those domains.

Meanwhile, we shall explore a slightly different direction. Let � � C be a
domain—multiply connected or not. Let � be a nontrivial automorphism of that
domain. This means that � is a one-to-one, onto, holomorphic mapping of the
domain to itself. Let f'j g be a complete orthonormal basis for the Bergman space
on�. Let I0 denote the collection of those basis elements 'j such that 'j ı� D 'j
(as an example, think of the even basis elements on the disc, with the automorphism
being � 7! 	�). Assume that I0 is a proper subset of the full basis. Let X D XI0 be
the subspace of the full Bergman space generated by I0.

Now let us consider the Bergman kernel KI0 for X . Certainly this kernel will
have the boundary diagonal D D f.z; �/ 2 @� � @� W z D �g as usual as a singular
set. But it will also have the image S D f.z; �/ W � 2 @�; z D �.�/g of D under � as
a singular set. Thus we now have a fairly general criterion for recognizing multiple
singular sets.

See Sect. 6.8 for more on multiply connected domains.

1.11 The Bergman Kernel for a Sobolev Space

We may define the Bergman kernel on the disc for the Sobolev space W 1 and it
appears to be (up to a bounded error term)

1

�
log.1 	 z�/ :

Specifically, set 'j .�/ D �j . We calculate that

ZZ

D

j'j .�/j2 dA D
ZZ

D

j�j j2 dA D �

j C 1

and
ZZ

D

j'0
j .�/j2 dA D

ZZ

D

jj�j�1j2 dA D j� :
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Thus

k'j kW 1 D p
� �
s
j 2 C j C 1

j C 1
:

Thus the full Bergman kernel for W 1 is given by

1X
jD0

1

�
� jC1
j 2CjC1 �zj �j D 1

�
C

1X
jD1

1

�
� jC1
j 2CjC1 �zj �j D 1

�
C

1X
jD1

1

�
� 1
j

�zj �jCE ;

where E is an error term which is bounded and has one bounded derivative. So E is
negligible from the point of view of determining where the kernel has singularities
(i.e., where it blows up).

We look at

1

�
C 1

�

1X
jD1

1

j
˛j D 1

�
C 1

�

1X
jD1

Z
˛j�1

D 1

�
C 1

�

Z 1X
jD1

˛j�1

D 1

�
C 1

�

Z
1

˛

1X
jD1

˛j

D 1

�
C 1

�

Z
1

˛

2
4 1X
jD0

˛j 	 1
3
5

D 1

�
C 1

�

Z
1

˛

�
1

1 	 ˛ 	 1
�

D 1

�
C 1

�

Z
1

1 	 ˛
D 1

�
	 1

�
log.1 	 ˛/:

Thus the Bergman kernel for the order 1 Sobolev space is given by

K.z; �/ D 1

�
	 1

�
log.1 	 z�/ :

Also the kernel for the space generated just by the monomials with even index
seems to be given by (up to a bounded error term)

1

�

�
log.z�/C 1

2
log.1 	 z�/ 	 1

2
log.1C z�/

�
:
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To see this, we look at

1X
jD0

1

�
� 2j C 1

.2j /2 C 2j C 1
z2j �

2j D 1

�
C 1

�

1X
jD1

1

2j
z2j �

2j C F :

Here, as in the first calculation, F is a bounded term with one bounded derivative.
So it is negligible from the point of view of our calculation.

Thus we wish to calculate

1

�
C 1

�

1X
jD1

1

2j
˛2j D 1

�
C 1

�

1X
jD1

Z
˛2j�1

D 1

�
C 1

�

Z
1

˛

1X
jD1

˛2j

D 1

�
C 1

�

Z
1

˛

2
4 1X
jD0

˛2j 	 1
3
5

D 1

�
C 1

�

Z
1

˛

�
1

1 	 ˛2 	 1
�

D 1

�
C 1

�

Z
˛

1 	 ˛2

D 1

�
	 1

2�
log.1 	 ˛2/:

In conclusion, the Bergman kernel for the order 1 Sobolev space using only the basis
elements with even index is

K 0.z; �/ D 1

�
	 1

2�
log.1 	 z � �/ 	 1

2�
log.1C z � �/ :

In short, there are singularities as z and � tend to the same disc boundary point and
also as z and � tend to antipodal disc boundary points.

1.12 Ramadanov’s Theorem

In the noted paper [RAM1], Ramadanov proved a very useful result about the
limit of the Bergman kernels in an increasing sequence of domains. A version of
Ramadanov’s classical result is this:
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Theorem 1.12.1. Let �1 � �2 � � � � � be an increasing sequence of bounded
domains in C

n and let � D [1
jD1�j . Assume also that � is bounded. Then

K�.z; �/ D lim
j!1K�j .z; �/ ;

with the limit being uniform on compact subsets of � ��.

In the paper [KRA8], Krantz generalizes Ramadanov’s result to a sequence of
domains that is not necessarily increasing. Here we present the statement of his
theorem and the proof.

Theorem 1.12.2. Let�j be a sequence of domains that converges to a limit domain
� in the Hausdorff metric of domains (see [KRPA1]). Then K�j ! K� uniformly
on compact subsets of � ��.

Proof. Let �1;�2; : : : be domains in C
n and let �j ! � in the topology of the

Hausdorff metric. For convenience, we let ˚j W � ! �j be diffeomorphisms such
that the ˚j converge to the identity in a suitable topology.

Now fix a point z that lies in all the �j and in � as well. Then K�.z; � / is
the Hilbert space representative (according to the Riesz’s theorem) of the point
evaluation linear functional

A2.�/ 3 f 7! f .z/ :

Of course it is also the case that K�j .z; � / is the Hilbert space representative
(according to the Riesz’s theorem) of the point evaluation linear functional

A2.�j / 3 f 7! f .z/ :

Of course the standard lemma for the Bergman theory (using the mean-value
property) tells us that the point evaluation functional at z is bounded with a bound
that is independent of j (in fact it only depends on the .	n/th power of the distance
of z to the boundary and that may be taken to be uniform in j ). Thus if we set
 j .z/ D K�j .z; ˚j . � //, then k j kL2.�/ is bounded, independent of j .

By the Banach–Alaoglu theorem, we may conclude that there is a weak-�
convergent subsequence  jk . Call the weak-� limit  0. But then, for g 2 A2.�jk /,
we see that

g.z/ D
Z
�jk

K�jk
.z; �/g.�/ dV.�/

D
Z
�

 jk .�/g.˚jk .�//˚
0
jk
.�/˚ 0

jk
.�/ dV.�/

�
Z
�

 jk .�/hjk .�/ dV.�/
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Notice that the hjk are all defined on � and they converge in the strong topology of
L2.�/ to some limit function Qh. In fact, by applying the @ operator, one can see that
Qh is a holomorphic function on �.

Thus our expression converges to

Z
�

 0.�/ Qh.�/ dV.�/: (1.12.2.1)

Now in fact we may apply this preceding argument to see that every subsequence
of the index j has a subsequence so that we get the indicated convergence. The
conclusion is that the  j converge weak-� to  0 and the hj converge strongly to Qh
so that

g.z/ D
Z
�

 0.�/ Qh.�/ dV.�/:

Next we examine the definition of the hj and the ˚j to see that in fact Qh.z/ D
g.z/. Thus we may write the last line as

g.z/ D
Z
�

 0.�/ Qh.�/ dV.�/ D Qh.z/ :

Finally, one can reason backwards to see that any L2 holomorphic function Qh on
� can arise in this way. The only possible conclusion is that  0 is the representing
function for point evaluation at z. So  0 is the Bergman kernel for �. In conclusion
K�j .z; � / converges weak-� to K�.z; � /.

Certainly we may now apply the weak-� convergence to a testing function
consisting of a C1

c radial function to conclude that  jk in fact converges uniformly
on compact sets to  0. So we see that  0 is conjugate holomorphic. We may
therefore conclude that  0 is the Bergman kernel of �.

Thus we see that theK�j .z; � / converge uniformly on compact sets toK�.z; � /.
This is the desired conclusion.

1.13 Coda on the Szegő Kernel

It is not difficult to see that, suitably formulated, there is a version of Theorem 1.12.2
for the Szegő kernel (see [KRA8]). To wit,

Theorem 1.13.1. Let �j be a sequence of domains with C2 boundary that
converges to a limit domain � in the C2 topology of domains. This means that
each �j D fz 2 C

n W �j .z/ < 0g, r�j ¤ 0 on @�j , and the defining functions



1.14 Boundary Localization 59

�j converge in the C2 topology. Then the Szegő kernels S�j ! S� uniformly on
compact subsets of � ��.

Without much effort, it can also be seen that there is a version of our theorem in
the rather general setting of Hilbert space with reproducing kernel. See [ARO] for a
thorough treatment of this abstract concept.

1.14 Boundary Localization

We have already seen in Sect. 1.9 a suggestion that the Bergman kernel of a multiply
connected domain ought to be expressible in terms of the Bergman kernels of
component domains. In this section we briefly explore that idea.

We begin by examining a slightly different avenue for getting one’s hands on the
Bergman kernel of a domain. The general approach is perhaps best illustrated with
an example. Let

� D f� 2 C W 1 < j�j < 2g :

This is the annulus, and any explicit representation of its Bergman kernel will
involve elliptic functions (see [BER1] and [BER2]). One might hope, however, to
relate the Bergman kernel K� of � to the Bergman kernels K�1 and K�2 of

�1 D f� 2 C W j�j < 2g

and

�2 D f� 2 C W 1 < j�jg :

The first of these has an explicitly known Bergman kernel (see [KRA1]) and the
second domain is the inversion of a disc, so its kernel is known explicitly as well.

One could pose a similar question for domains of higher connectivity. The
question also makes sense, with a suitable formulation, in several complex variables.
Our purpose here is to come up with precise formulations of results such as these
and to prove them. In one complex variable, we can make decisive use of classical
results relating the Bergman kernel to the Green’s function (see [KRA2]). In several
complex variables there are analogous results of Garabedian (see [GARA]) that will
serve in good stead.

In Sect. 1.14.1 we introduce appropriate definitions and notation. In Sect. 1.14.2
we prove a basic, representative result in the plane. Section 1.14.3 proves a more
general result in the plane. Section 1.14.3 treats the multidimensional result.

We thank Richard Rochberg for bringing these questions to our attention.
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1.14.1 Definitions and Notation

If � � C
n is a bounded domain, then we let K�.z; �/ denote its Bergman kernel.

This is the reproducing kernel for

A2.�/ � ff 2 L2.�/ W f is holomorphic on �g :
It is known, for planar domains, that K�.z; �/ is related to the Green’s function

G�.z; �/ for � by this formula:

K�.z; �/ D 4 � @2

@�@z
G�.�; z/ :

Of course it is essential for our analysis to realize that the Green’s function is known
quite explicitly on any given domain. If

 .�; z/ D 1

2�
log j� 	 zj

is the fundamental solution for the Laplacian (on all of C), then we construct the
Green’s function as follows:

Given a domain � � C with smooth boundary, the Green’s function is posited
to be a function G�.�; z/ that satisfies

G�.�; z/ D  .�; z/ 	 F�
z .�/ ;

where F�
z .�/ D F�.�; z/ is a particular harmonic function in the � variable. It is

mandated that F� be chosen (and is in fact uniquely determined by the condition) so
that G. � ; z/ vanishes on the boundary of �. One constructs the function F�. � ; z/,
for each fixed z, by solving a suitable Dirichlet problem. Again, the reference
[KRA1, p. 40] has all the particulars. It is worth noting that the Green’s function
is a symmetric function of its arguments.

In our proof, we shall be able to exploit known properties of the Poisson kernel
(see especially [KRA3]) and of the solution to the Dirichlet problem (see [KRA4])
to get the estimates that we need.

1.14.2 A Representative Result

We first prove our main result for the domain

� D f� 2 C W 1 < j�j < 2g :
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This argument will exhibit all the key ideas—at least in one complex variable. The
later exposition will be clearer because we took the time to treat this case carefully.

Let

�1 D f� 2 C W j�j < 2g

and

�2 D f� 2 C W 1 < j�jg :

For convenience in what follows, we let S1 be the boundary curve of �1 and S2 be
the boundary curve of �2. Of course it then follows that @� D S1 [ S2.

We claim that

K�.z; �/ D 1

2
ŒK�1.z; �/CK�2.z; �/
C E.z; �/ ;

where E is an error term that is smooth on � ��. In particular, E is bounded with
all derivatives bounded on that domain.

For the proof, we write

1

8

h
K�1.z; �/CK�2.z; �/

i

D 1

2

@2

@�@z

�	
 .�; z/ 	 F�1.�; z/


C 	
 .�; z/ 	 F�2.�; z/




D @2

@�@z

�
 .�; z/ 	 1

2

�
F�1.�; z/C F�2.�; z/

�
:

Now we claim that

F�1.�; z/C F�2.�; z/ D 2F�.�; z/C E.z; �/

for a suitable error term E . We must analyze

G.�; z/ � ŒF �1.�; z/C F�2.�; z/
 	 2F�.�; z/ :

We think of G as the solution of a Dirichlet problem on �, and we must analyze
the boundary data. What we see is this:

• For z near S1, F� and F�1 agree on S1 (in the variable �) and equal 0. And
F�2 is smooth and bounded by C � j log.1=2/j, just by the form of the Green’s
function. All three functions are plainly smooth and bounded on S2 (for z still
near S1) by similar reasoning. In conclusion, G is smooth and bounded on � for
z near S2.
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• For z near S2, F� and F�2 agree on S2 (in the variable �) and equal 0. And
F�1 is smooth and bounded by C � j log.1=2/j, just by the form of the Green’s
function. All three functions are plainly smooth and bounded on S1 (for z still
near S1) by similar reasoning. In conclusion, G is smooth and bounded on � for
z near S2.

• For z away from both S1 and S2—in the interior of�—it is clear that all the terms
are bounded and smooth on @�. So the solution G of the Dirichlet problem will
also be smooth as desired.

As a result of these considerations, G is smooth on �.
That completes our argument and gives, altogether, the error term E . Thus

F�1 C F�2 	 2F� D E :

It follows that

1

2
ŒK�1.z; �/CK�2.z; �/
 D 4

@2

@�@z

�
 .�; z/ 	 F�.�; z/

�
C E 0

D K�.z; �/C E 00

1.14.3 The More General Result in the Plane

Now consider a smoothly bounded domain � � C with k connected components
in its boundary, k � 2. We denote the boundary components by S1; : : : ; Sk ; for
specificity, we let S1 be the component of the boundary that bounds the unbounded
component of the complement of �. Let �1 be the bounded region in the plane
bounded by the single Jordan curve S1. Let �2; : : : ; �k be the unbounded regions
bounded by S2, S3, . . . , Sk , respectively.

Then we may analyze, just as in the last subsection, the expression

K� 	 1

k

�
K�1 CK�2 C � � � CK�k



to obtain a smooth error term

E D E1 C E2 C � � � C Ek :
That completes our analysis of a smooth, finitely connected domain in the plane.

1.14.4 Domains in Higher-Dimensional Complex Space

The elegant paper [GARA] contains the necessary information about the relation-
ship of the Bergman kernel and a certain Green’s function in several complex
variables so that we may carry out our program in that more general context.
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Fix a smoothly bounded domain � in C
k . Let t D .t1; : : : ; tk) be a fixed point

in �. Following Garabedian’s notation, we set

r D
vuut kX

jD1
jzj 	 tj j2 :

Let �k be constants chosen so that

lim
�!0

�k

Z
�

B �
kX

jD1

@r�2kC2

@zj
˛j d� C B.t/ D 0 ;

where � is the sphere of radius � about t , B is some continuous function, and
.˛1; : : : ; ˛k/ is a collection of complex-valued direction cosines.

Now set �.z; t / to be that function

� D �kr
�2kC2 C regular terms (1.14.1)

on � so that

kX
jD1

@�

@zj
� ˛j D 0

on @�,

@

@zj
4 � D 0

on � (for j D 1; : : : ; k), and such that

Z
�

�f dV D 0 ;

for all functions f analytic in�. It follows from standard elliptic theory that such a
� exists.

In fact, according to [GAR], this function � that we have constructed is a Green’s
function for the boundary value problem

@

@zj
4 ˇ D 0 on �; j D 1; : : : ; k

kX
jD1

@ˇ

@zj
� ˛j D 0 on @�:
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Garabedian goes on to prove that the Bergman kernel for � is related to the
Green’s function � in this way:

K�.z; t / D 4z�.z; t / :

This is just the information that we need to apply the machinery that has been
developed here.

In order to flesh out the argument in the context of several complex variables,
our primary task is to argue that our new Green’s function has a form similar
to the classical Green’s function from one complex variable. But in fact this is
immediate from (1.14.1). It follows from this that the argument in Sect. 1.14.3 using
the maximum principle will go through as before, and we may establish a version
of the result in Sects. 1.14.2 and 1.14.3 in the context of several complex variables.
The theorem is this:

Theorem 1.14.2. Let � be a smoothly bounded domain in C
n with boundary

having connected components S1, S2, . . . , Sk . For specificity, say that S1 is the
boundary component that bounds the unbounded portion of the complement of
�. Let K� be the Bergman kernel for �, let K1 be the Bergman kernel for the
bounded domain having S1 as its single boundary element, and let Kj , for j � 2,
be the Bergman kernel for the unbounded domain having Sj as its single boundary
component. Then

K� D K1 CK2 C � � � CKk C E ;

where E is an error term that is bounded with bounded derivatives.

The reader can see that this new theorem is completely analogous to the results
presented earlier in the one-variable setting. But it must be confessed that this
theorem is something of a canard. For, when j � 2, any function holomorphic
on the unbounded domain with boundary Sj will (by the Hartogs extension
phenomenon) extend analytically to all of C

n. And of course there are no L2

holomorphic functions on all of C
n. So it follows that Kj � 0. So the theorem

really says that

K� D K1 C E :

This is an interesting fact, but not nearly as important or provocative as the one-
variable result. The one other point worth noting is that the statement of the result
is now a bit different from that in one complex variable, just because we are dealing
with a different Green’s function for a different boundary value problem. Basically
what we are seeing is that K2; : : : ; Kk do not count at all, and K1 is the principal
and only term.
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Exercises

1. The automorphism group of the ball. Let B � C
2 be the unit ball. Complete the

following outline to calculate the set of biholomorphic self-maps of B:

(a) Let a 2 C; jaj < 1: Then

�a.z1; z2/ D
 

z1 	 a
1 	 az1

;

p
1 	 jaj2z2
1 	 az1

!

is a biholomorphic mapping of B to itself.
(b) If � is a unitary mapping of C

2 (i.e., the inverse of � is its conjugate
transpose; equivalently, � preserves the Hermitian inner product on C

2), then
� is a biholomorphic mapping of the ball.

(c) Prove that if  W B ! B is holomorphic and  .0/ D 0, then all eigenvalues
of Jac .0/ have modulus not exceeding 1. (Hint: Apply the one-variable
Schwarz lemma in a clever way.)

(d) Apply part (c) to any biholomorphic mapping of B that preserves the origin,
and to its inverse, to see that such a mapping has Jacobian matrix at the
origin with all eigenvalues of modulus 1:

(e) Use the result of part (d) to see that any biholomorphic mapping of the ball
that preserves the origin must be linear, indeed unitary.

(f) If now ˛ is any biholomorphic mapping of the ball, choose a unitary mapping
� and a complex constant a such that �a ı � ı ˛ is a biholomorphic mapping
that preserves the origin. Thus by part (e), �a ı � ı ˛ is unitary.

(g) Conclude that the mappings �a and the unitary mappings generate the
automorphism group of the ball in C

2:

2. Generalize the result of Exercise 1 to n complex dimensions.
3. Let � � RN be a domain. Suppose that @� is a regularly imbedded Cj

manifold, j D 1; 2; : : : : This means that, for each P 2 @�, there is a
neighborhood UP � RN and a Cj function fP W UP ! R with rfP 6D 0

and fx 2 UP W fP .x/ D 0g D UP \ @�: Prove that there is a function
� W RN ! R satisfying

(a) r� 6D 0 on @�:
(b) fx 2 RN W �.x/ < 0g D �:

(c) � is Cj :

Prove that if � has a Cj defining function, then @� is a regularly imbedded
Cj submanifold of RN :

Prove that both of the preceding concepts are equivalent to the following:
For each P 2 @� there is a neighborhood UP ; a coordinate system t1; : : : ; tN
on UP ; and a Cj function �.t1; : : : ; tN / such that f.t1; : : : ; tN / 2 UP W tN D
�.t1; : : : ; tN�1/g D @� \ UP : This means that @� is locally the graph of a Cj

function.
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4. Let Qh2.@D/ be the space of those continuous functions that are the boundary
functions of harmonic functions on the disc. Mimic the construction of the
Szegő kernel to obtain a reproducing kernel. What reproducing kernel do you
obtain? Why is the space Qh2.@D/ defined incorrectly (see [EPS])?

5. Derive a formula for the Green’s function and the Poisson kernel for the ball
B.x0; r/ � RN by using invariance properties of the Laplacian.

6. Let � � RN be a bounded domain with C2 boundary. Let G.x; y/ be the
Green’s function for the Laplacian on �: Prove that G.P;Q/ D G.Q;P /; all
P 6D Q: In particular, G extends to a smooth (C2��) function on � � � n
f.x; x/ W x 2 �g and is harmonic in each variable. Hint: Fix P;Q 2 �;P 6D
Q: Apply Green’s theorem on

�� � � n 	B.P; �/ [ B.Q; �/
 ;
� small, to the functions G.P; �/ and G.Q; �/:

7. Hopf’s lemma, originally proved (see [COH]) for the sake of establishing the
maximum principle for solutions of second order elliptic equations, has proved
to be a powerful tool in the study of functions of several complex variables.
Here we state and outline a proof of this result. While simpler proofs are
available (see [KRA4]), this one has the advantage of applying in rather general
circumstances.

Theorem: Let � � RN be a bounded domain with C2 boundary. Let f W
� ! R be harmonic and nonconstant on�;C 1 on�: Suppose that f assumes
a (not necessarily strict) maximum at P 2 @�: If � D �P is the unit outward
normal to @� at P; then .@f=@�/.P / > 0:

Outline of Proof

(a) Let B1 be a ball internally tangent to @� at P with @B1 \ @� D fP g: Let
r > 0 be the radius of B1 (see Fig. 1.1). Assume without loss of generality
that the center of B1 is at the origin. Let B2 be a ball centered at P of radius
r1 < r: Let B 0 D B1 \ B2: Notice that @B 0 D S 0

1 [ S 0
2:

(b) Let ˛ > 0 and set h.x/ D e�˛jxj2 	 e�˛r2 : Then

�h D e�˛jxj2f4˛2jxj2 	 2˛N g:

(c) If ˛ > 0 is sufficiently large, then �h > 0 on B 0:
(d) Set v.x/ � f .x/C �h.x/: If � > 0 is sufficiently small, then v.x/ < f .P /

for x 2 S 0
1. Also v.x/ D f .x/ < f .P / for x 2 S 0

2 n fP g: Use the maximum
principle.

(e) maxx2B0 v.x/ D f .P /:

(f) @v
@�
.P / D @f

@�
.P /C � @h

@�
.P / � 0:

(g) @f

@�
.P / > 0:



Exercises 67

Fig. 1.1 An internally tangent ball

Now suppose only that f 2 C.�/ and harmonic on � and that the point
P 2 @� is a local (not necessarily strict) maximum of f:Modify the preceding
argument to prove that

lim inf
�!0C

�
f .P / 	 f .P 	 ��/

�

�
> 0:

8. Holomorphic mappings in C
2 are not necessarily conformal (i.e., infinitesimally

angle preserving). Show that the example F.z1; z2/ D .z21; z
2
1Cz2/ confirms this

statement.
9. Use the classical Hurwitz theorem of one complex variable to give another

proof that a holomorphic function of several variables cannot have an isolated
zero.

10. Are holomorphic functions (of several variables) open? Are holomorphic
mappings (of several variables) open?

11. Let z 2 �1 � �2 � C
n: Let Kj be the Bergman kernel for �j : Then show

that K2.z; z/ � K1.z; z/ for all z 2 �1: Further show that kK2.z; �/kL2.�2/ �
kK1.z; �/kL2.�1/:

12. Let faij gni;jD1 be complex constants such that
P
aijwiwj � C jwj2 for some

C > 0 and all w 2 C
n: Let

� D
8<
:z 2 C

n W 	2Re z1 C
nX

i;jD1
aij zi zj < 0

9=
; :

Prove that the Bergman kernel for � is given on the diagonal by

K.z; z/ D nŠdet .aij /ni;jD1
�n.2Re z1 	Pn

i;jD1 aij zi zj /nC1 :

(Hint: The domain � is biholomorphic to the ball. See [GRA] for details.)
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13. Let � � C
n be a domain. Let ffj g be a sequence of holomorphic functions

on � that converges pointwise to a function f at every point of �: Prove that
f is holomorphic on a dense open subset of �: (Hint: Let U � � be the
closure of any open subset U of �: Apply the Baire category theorem to the
sets SM D fz 2 U W jfj .z/j � M; all j g:/

14. Complete the following outline to prove the Cauchy–Fantappiè formula:

Theorem: Let� �� C
n be a domain withC1 boundary. Let w.z; �/ D .w1.z; �/; : : : ;

wn.z; �// be a C1; vector-valued function on ��� n fdiagonalg that satisfies

nX
jD1

wj .z; �/.�j � zj / 	 1:

Then we have for any f 2 C1.�/ \ fholomorphic functions on �g and any z 2 �

the formula

f .z/ D 1

nW.n/

Z
@�

f .�/�.w/^ !.�/ :

Here !.�/ 	 d�1^d�2^� � �^d�n and �.w/ 	 Pn
jD1.�1/jC1wj dw1^� � �^dwj�1^

dwjC1 ^ � � � ^ dwn.

Proof. We may assume that z D 0 2 �:
(a) If ˛1 D .a11; : : : ; a

1
n/; : : : ; ˛

n D .an1 ; : : : ; a
n
n/ are n	tuples of C1 functions

on � that satisfy
Pn

jD1 a
j
i .�/ � .�j 	 zj / D 1; let

B.˛1; : : : ; ˛n/ D
X
�2Sn

�.�/a1�.1/ ^ @.a2�.2// ^ � � � ^ @.an�.n//;

where Sn is the symmetric group on n letters and �.�/ is the signature of the
permutation �: Prove that B is independent of ˛1:

(b) It follows that @B D 0 on � n f0g (indeed @B is an expression like B with
the expression a1�.1/ replaced by @a1�.1/).

(c) Use (b), especially the parenthetical remark, to prove inductively that if ˇ1 D
.b12; : : : ; b

1
n/; : : : ; ˇ

n D .bn2 ; : : : ; b
n
n/; then there is a form 	 on � n f0g such

that

�
B.˛1; : : : ; ˛n/ 	 B.ˇ1; : : : ; ˇn/ ^ !.�/ D @	 D d	:

(d) Prove that if ˛1 D � � � D ˛n D .w1; : : : ;wn/, then B.˛1; : : : ; ˛n/ simplifies

B.˛1; : : : ; ˛n/ ^ !.�/ D .n 	 1/Š�.w/ ^ !.�/:

(e) Let S be a small sphere of radius � > 0 centered at 0 such that S � �: Use
part (c) to see that
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Z
@�

f .�/�.w/ ^ !.�/ D
Z
S
f .�/�.w/ ^ !.�/:

(f) Now use (c) and (d) to see that

Z
S
f .�/�.w/ ^ !.�/ D

Z
S
f .�/�.v/ ^ !.�/;

where

v.z; �/ D �j 	 zj
j� 	 zj2 :

(Warning: Be careful if you decide to apply Stokes’s theorem.) We know that
the last line is n �W.n/ � f .0/:

15. Use a limiting argument to show that the hypotheses of the Cauchy–Fantappiè
formula (the preceding exercise) may be weakened to f 2 C.�/; w 2 C.� �
@�/:

Prove, using only linear algebra, that if w is as in the statement of the
Cauchy–Fantappiè formula, then there are functions  1; : : : ;  n; � such that
wj D  j =�; j D 1; : : : ; n.

16. Show that K.0; 0/ D 1=V.B/: Here K is the Bergman kernel for the ball B:
Use the automorphism group of B; together with the invariance of the kernel,
to calculate K.z; z/ for every z 2 B: The values of K on the diagonal then
completely determine K.z; �/: Why?

17. Let � be the Hartogs triangle f.z1; z2/ W jz1j < jz2j < 1g: Every analytic
function on a neighborhood of � continues to the bidisc. Find an orthonormal
basis for A2.�/:



Chapter 2
The Bergman Metric

2.1 Smoothness to the Boundary
of Biholomorphic Mappings

Poincaré’s theorem (see [KRA1,KRA9] for discussion) that the ball and polydisc are
biholomorphically inequivalent shows that there is no Riemann mapping theorem
(at least in the traditional sense) in several complex variables. More recent results of
Burns, Shnider, and Wells [BSW] and of Greene and Krantz [GRK1,GRK2] confirm
how truly dismal the situation is. First, we need a definition.

Definition 2.1.1. Let �0 be a Ck defining function for a bounded domain �0 �
RN ; k � 2. We define a neighborhood basis for �0 in the Ck topology as follows:
Let � > 0 be so small that if k� 	 �0kCk < �, then � has nonvanishing gradient on
fx W �.x/ D 0g: For any such �; let ˝� D fx 2 RN W �.x/ < 0g: Define

Uk� .˝0/ D f˝� � RN W k� 	 �0kCk < �g:

Observe that Uk� .�0/ is a collection of domains. Then the sets U� � Uk� .�0/ are
called neighborhoods of ˝0 in the Ck topology. Of course neighborhoods in the
C1 topology are defined similarly.

If ˝1;˝2 are domains in C
n, then we say that ˝1 � ˝2 if ˝1 is biholomorphic

to ˝2:

Theorem 2.1.2 (Burns–Shnider–Wells). Let k 2 N: Let � > 0 be small. Let
Uk� � Uk� .B/ be any neighborhood of the ball B � C

n in the Ck topology as
defined above. If n � 2, then Uk� = � is uncountable, no matter how small � > 0 is
or how large k is (even k D 1 or k D !). By contrast, if n D 1 and � < 1=5, then
Uk� = � has just one element.

The last statement of the theorem perhaps merits some explanation. If n D 1 and
� < 1=5, then perforce any equivalence class in Uk� = � will contain only bounded

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 2,
© Springer Science+Business Media New York 2013
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72 2 The Bergman Metric

domains that are simply connected. Thus any such domain will, by the Riemann
mapping theorem, be conformally equivalent to the disc.

Greene and Krantz [GRK1, GRK2] have refined the theorem to show that, when
n � 2, in fact each of the equivalence classes is closed and nowhere dense.

We now give a brief accounting of some of the differences between n D 1 and
n > 1:A more detailed discussion appears in Greene and Krantz [GRK9], in [GKK]
and also in the original work of Poincaré. This subject begins with the following
breakthrough of Fefferman [FEF1, Part I]:

Theorem 2.1.3. Let ˝1;˝2 � C
n be strictly pseudoconvex domains with C1

boundary. If � W ˝1 ! ˝2 is biholomorphic, then � extends to a C1
diffeomorphism of ˝1 onto ˝2:

The Fefferman’s theorem enables one to see that, if˝1 and˝2 are biholomorphic
under �, then there are certain differential invariants of @˝1; @˝2 that must be
preserved under �:More precisely, if k is large, then the kth-order Taylor expansion
of the defining function �1 for ˝1 (resp. of the defining function �2 for ˝2) has
more coefficients than the kth-order Taylor expansion for � (the disparity in the
number grows rapidly with k). Since �1 is mapped to �2 under composition with
��1; it follows that some of these coefficients, or combinations thereof, must be
invariant under biholomorphic mappings. Tanaka [TAN] and Chern–Moser [CHM]
have made these remarks precise and have shown how to calculate these invariants.
A more leisurely discussion of these matters appears in Greene and Krantz [GRK9].

Now it is easy to see intuitively that two domains ˝ and ˝0 can be close in the
Ck topology, any k; and have entirely different Chern–Moser–Tanaka invariants.
This notion is made precise, for instance, in Burns, Shnider, and Wells [BSW], by
using a transversality argument. [Note that everything we are saying is vacuous in
C
1 because the invariants must live in the complex tangent space to the boundary—

which is empty in dimension one. See [KRA1].] It is essentially a foregone
conclusion that things will go badly in higher dimensions.

If one seeks positive results in the spirit of the Riemann mapping theorem in
dimension n � 2; then one must find statements of a different nature. Fridman
[FRI] has constructed a “universal domain” ˝� which can be used to exhaust any
other. He has obtained a number of variants of this idea, using elementary but clever
arguments. Semmes [SEM] has yet another approach to the Riemann mapping
theorem that is more in the spirit of the work of Lempert [LEM1]. We next present,
mainly for background, a substitute for the Riemann mapping theorem whose
statement and proof is more in the spirit of the Fefferman’s theorem. We continue
to use the notation �1 � �2 to mean that �1 is biholomorphic to �2.

In what follows, we let Aut.�/ denote the group (under composition of
mappings) of biholomorphic self-maps of the domain �.

Theorem 2.1.4 (Greene–Krantz [GRK2]). Let B � C
n be the unit ball. Let

�0.z/ D jzj2 	 1 be the usual defining function for B: If � > 0 is sufficiently small,
k D k.n/ is sufficiently large, and ˝ 2 Uk� .B/ then either

˝ � B (2.1.4.1)
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or

˝ is not biholomorphic to the ball and (2.1.4.2)

(a) Aut.˝/ is compact.
(b) Aut.˝/ has a fixed point. Moreover,

If K �� B; � > 0 is sufficiently small (depending on K), and ˝ 2 Uk� .B/
has the property that its fixed point set lies in K; then there is a biholomorphic
mapping ˚ W ˝ ! ˚.˝/ 	 ˝0 
 C

n such that Aut.˝0/ is the restriction to
˝0 of a subgroup of the group of unitary matrices.

The collection of domains to which (2.1.4.2) applies is both dense and open.

Theorem 2.1.4 shows, in a weak sense, that domains near the ball that have any
automorphisms other than the identity are (biholomorphic to) domains with only
Euclidean automorphisms. It should be noted that (2.1.4.2a) is already contained in
the theorem of Bun Wong and Rosay [WON, ROS] and that the denseness of the
domains to which (2.1.4.2) applies is contained in the work of Burns–Shnider–
Wells. The proof of Theorem 2.1.4 involves a detailed analysis of Fefferman’s
asymptotic expansion for the Bergman kernel and of the @-Neumann problem and
would double the length of this book if we were to treat it in any detail.

The purpose of this lengthy introduction has been to establish the importance of
Theorem 2.1.4 and to set the stage for what follows. It may be noted that the proof of
the result analogous to Fefferman’s in C

1; that a biholomorphic mappings of smooth
domains extends smoothly to the boundary, was proved in the nineteenth century
by Painlevé [PAI]. The result in one complex dimension has been highly refined,
beginning with work of Kellogg [KEL] and more recently by Warschawski [WAR1,
WAR2, WAR3], Rodin and Warschawski [ROW], and others. This classical work
uses harmonic estimation, potential theory, and the Jordan curve theorem, devices
which have no direct analogue in higher dimensions. A short, self-contained, proof
of the one-variable result—using ideas closely related to those presented here—
appears in [BEK].

We conclude this section by presenting a short and elegant proof of the Feffer-
man’s Theorem 2.1.3. The techniques are due to Bell [BEL1] and Bell and Ligocka
[BELL]. The proof uses an important and nontrivial fact (known as “Condition
R” of Bell and Ligocka) about the @-Neumann problem. We will actually prove
Condition R for a strictly pseudoconvex domain in Theorem 4.4.5. (Condition R,
and more generally the solution of the @-Neumann problem, is considered in detail
in the book Krantz [KRA4].)

Let ˝ �� C
n be a domain with C1 boundary. We define

Condition R (Bell [BEL1]) Define an operator on L2.˝/ by

Pf .z/ D
Z
˝

K.z; �/f .�/dV.�/ ;
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where K.z; �/ is the Bergman kernel for ˝: This is the Bergman projection. Then,
for each j > 0, there is an m D m.j / > 0 such that P satisfies the estimates

kPf kW j .˝/ � Cj kf kW m.˝/

for all testing functions f:
Using a little Sobolev theory (see [KRA4]), one can easily see that this

formulation of Condition R is equivalent to the condition that the Bergman kernel
map C1.�/ to C1.�/.

The deep fact, which we shall prove in Sect. 4.4, is that Condition R holds on
any strictly pseudoconvex domain.

In fact we can and should say what is the key idea in establishing this last
assertion. Let P W L2.�/ ! L2.�/. The operator

@ W
^

0;j !
^

0;jC1 (2.1.5)

is the usual exterior differential operator of complex analysis. One may show that the
second-order, elliptic partial differential operator D @ @

� C @
�
@ has a canonical

right inverse called N . This is the @-Neumann operator. These operators are treated
in detail in [FOK] and [KRA4]. Then it is a straightforward exercise in Hilbert space
theory to verify that

P D I 	 @�
N@ ;

whereP is the Bergman projection. Now the references [FOK] and [KRA4] prove in
detail thatN mapsW s (the Sobolev space of order s) toW sC1 for every s. It follows
from this and formula (2.1.5) that P maps W s to W s�1. That is enough to verify
Condition R.

We remark in passing that, in general, it does not matter whether m.j / is much
larger than j or whether the m.j / in Condition R depends polynomially on j or
exponentially on j: It so happens that, for a strictly pseudoconvex domain, we may
take m.j / D j . This assertion is proved in [KRA4] in detail. On the other hand,
Barrett [BAR1] has shown that, on the Diederich–Fornaess worm domain [DIF1],
we must take m.j / > j: Later on, Christ [CHR1] showed that Condition R fails
altogether on the worm.

Now we build a sequence of lemmas leading to the Fefferman’s theorem. First
we record some notation.

We let W j .�/ be the usual Sobolev space. See [KRA4] for this idea.
If ˝ �� C

n is any smoothly bounded domain and if j 2 N; we let

WHj .˝/ D W j .˝/ \ fholomorphic functions on ˝g;

WH1.˝/ D
1\
jD1

WHj .˝/ D C1.˝/ \ fholomorphic functions on ˝g:
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HereW j is the standard Sobolev space on a domain (for which see [KRA4,ADA]).
Let W j

0 .˝/ be the W j closure of C1
c .˝/: [Exercise: if j is sufficiently large, then

the Sobolev embedding theorem implies trivially that W j
0 .˝/ is a proper subset of

W j .˝/:1]
Let us say that u; v 2 C1.˝/ agree up to order k on @˝ if

�
@

@z

�˛ �
@

@z

�ˇ
.u 	 v/

ˇ̌
ˇ̌
ˇ
@˝

D 0 8˛; ˇ with j˛j C jˇj � k:

Lemma 2.1.6. Let ˝ �� C
n be smoothly bounded and strictly pseudoconvex. Let

w 2 ˝ be fixed. Let K denote the Bergman kernel. There is a constant Cw > 0

such that

kK.w; �/ksup � Cw:

Proof. The function K.z; �/ is harmonic. Let � W � ! R be a radial, C1
c function

centered at w: Assume that � � 0 and
R
�.�/dV.�/ D 1: Then the mean value

property implies that

K.z;w/ D
Z
˝

K.z; �/�.�/dV.�/:

But the last expression equals P�.z/: Therefore

kK.w; �/ksup D sup
z2˝

jK.w; z/j

D sup
z2˝

jK.z;w/j

D sup
z2˝

jP�.z/j:

By Sobolev’s Theorem, this is

� C.˝/ � kP�kWH2nC1 :

By Condition R, this is

� C.˝/ � k�kW m.2nC1/ � Cw:

1For the readers’s convenience, we recall here that the Sobolev embedding theorem says that if a
function on R

N has more than N=2 derivatives in L2, then in fact it has a continuous derivative.
See [STE1], for instance, for the details.
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Lemma 2.1.7. Let u 2 C1.˝/ be arbitrary. Let s 2 f0; 1; 2; : : : g: Then there is a
v 2 C1.˝/ such that P v D 0 and the functions u and v agree to order s on @˝:

Proof. After a partition of unity, it suffices to prove the assertion in a small
neighborhood U of z0 2 @˝: After a rotation, we may suppose that @�=@z1 6D 0

on U \˝; where � is a defining function for ˝: Define the differential operator

� D
Re

nPn
jD1

@�

@zj
@
@zj

o
Pn

jD1
ˇ̌
ˇ @�@zj

ˇ̌
ˇ2

:

Notice that �� D 1: Now we define v by induction on s:
For the case s D 0; let

w1 D �u

@�=@�1
:

Define

v1 D @

@�1
w1

D u CO.�/:

Then u and v1 agree to order 0 on @˝: Also

P v1.z/ D
Z
K.z; �/

@

@�1
w1.�/dV.�/:

This equals, by integration by parts,

	
Z

@

@�1
K.z; �/w1.�/dV.�/:

Notice that the integration by parts is valid by Lemma 2.1.6 and because w1j@˝ D 0:

Also, the integrand in this last line is zero becauseK.z; �/ is conjugate holomorphic.
Suppose inductively that ws�1 D ws�2 C �s�1�s and vs�1 D .@=@z1/.ws�1/ have

been constructed. We show that there is a ws of the form

ws D ws�1 C �s � �sC1

such that vs D .@=@z1/.ws/ agrees to order s with u on @˝: By the inductive
hypothesis,
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vs D @

@z1
ws

D @ws�1
@z1

C @

@z1

�
�s � �sC1

D vs�1 C �s
�
.s C 1/�s

@�

@z1
C � � @�s

@z1

�

agrees to order s 	 1 with u on @˝ so long as �s is smooth. So we need to examine
D.u	vs/;whereD is an s-order differential operator. But ifD involves a tangential
derivative D0; then write D D D0 �D1: It follows that D.u 	 vs/ D D0.˛/; where
˛ vanishes on @˝ so that D0˛ D 0 on @˝: So we need only check D D �s:

We have seen that �s must be chosen so that

�s.u 	 vs/ D 0 on @˝:

Equivalently,

�s.u 	 vs�1/ 	 �s
�
@

@z1

�
.�s�

sC1/ D 0 on @˝

or

�s.u 	 vs�1/ 	 �s
�
�s

@

@z1
�sC1

�
D 0 on @˝

or

�s.u 	 vs�1/ 	 �s � .s C 1/Š
@�

@z1
D 0 on @˝:

It follows that we must choose

�s D �s.u 	 vs�1/
.s C 1/Š

@�

@z1

;

which is indeed smooth on U: As in the case s D 0; it holds that P vs D 0: This
completes the induction and the proof.

Remark 2.1.8. A retrospection of the proof reveals that we have constructed v by
subtracting from u a Taylor-type expansion in powers of �:

Lemma 2.1.9. For each s 2 N we have WH1.˝/ � P.W s
0 .˝//:

Proof. Let u 2 C1.˝/: Choose v according to Lemma 2.1.7. Then u	v 2 W s
0 and

P u D P.u 	 v/: Therefore

P.W s
0 /  P.C1.˝//  P.WH1.˝// D WH1.˝/:
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Henceforth, let ˝1;˝2 be fixed C1 strictly pseudoconvex domains in C
n; with

K1;K2 their Bergman kernels and P1; P2 the corresponding Bergman projections.
Let � W ˝1 ! ˝2 be a biholomorphic mapping, and let u D det JacC�: For j D
1; 2; let ıj .z/ D ı˝j .z/ D dist.z; c˝j /:

Lemma 2.1.10. For any g 2 L2.˝2/, we have

P1.u � .g ı �// D u � ..P2.g// ı �/:

Proof. Notice that u � .g ı �/ 2 L2.˝1/ by change of variables. Therefore

P1.u � .g ı �//.z/ D
Z
˝1

K1.z; �/u.�/g.�.�//dV.�/

D
Z
˝1

u.z/K2.�.z/; �.�//u.�/u.�/g.�.�//dV.�/

by Proposition 1.1.14. Change of variable now yields

P1.u � .g ı �//.z/ D u.z/
Z
˝2

K2.�.z/; �/g.�/dV.�/

D u.z/ � Œ.P2.g// ı �
 .z/:

Lemma 2.1.11. Let  W ˝1 ! ˝2 be a Cj diffeomorphism that satisfies

ˇ̌
ˇ̌@˛ 
@z˛

.z/

ˇ̌
ˇ̌ � C � .ı1.z//�j˛j; (2.1.11.1)

for all multi-indices ˛ with j˛j � j 2 N and

jr �1.w/j � C.ı2.w//
�1: (2.1.11.2)

Suppose also that

ı2. .z// � Cı1.z/: (2.1.11.3)

Then there is a number J D J.j / such that whenever g 2 W jCJ
0 .˝2/, then gı 2

W
j
0 .˝1/:

Proof. The subscript 0 causes no trouble by the definition of W j
0 : Therefore it

suffices to prove an estimate of the form

kg ı  k
W
j
0

� Ckgk
W
jCJ
0

; all g 2 C1
c .˝/:
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By the chain rule and Leibniz’s rule, if ˛ is a multi-index of modulus not exceeding
j; then

�
@

@z

�˛
.g ı  / D

X�
.Dˇg/ ı   �D	1 � � �D	` ;

where jˇj � j˛j;P j	i j � j˛j; and the number of terms in the sum depends only on
˛ (a classical formula of Faà de Bruno—see [ROM]—actually gives this sum quite
explicitly, but we do not require such detail). Note here that D	i is used to denote
a derivative of some component of  : By hypothesis, it follows that

ˇ̌
ˇ̌
�
@

@z

�˛
.g ı  /

ˇ̌
ˇ̌ � C

X
j.Dˇg/ ı  j � .ı1.z//�j :

Therefore

Z
˝1

ˇ̌
ˇ̌
�
@

@z

�˛
.g ı  /

ˇ̌
ˇ̌2 dV �

� C
XZ

˝1

j.Dˇg/ ı  j2.ı1.z//�2j dV.z/

D C
XZ

˝2

jDˇg.w/j2ı1
	
 �1.w/


�2j

�j det JC 
�1j2dV.w/:

But (2.1.11.2) and (2.1.11.3) imply that the last line is majorized by

C
XZ

˝2

jDˇg.w/j2ı2.w/�2j ı2.w/�2ndV.w/: (2.1.11.4)

Now if J is large enough, depending on the Sobolev embedding Theorem, then

jDˇg.w/j � Ckgk
W
jCJ
0

� ı2.w/2nC2j :

(Remember that g is compactly supported in ˝2:) Hence, (2.1.11.4) is majorized
by Ckgk

W
jCJ
0

:

Lemma 2.1.12. For each j 2 N; there is an integer J so large that if g 2
W

jCJ
0 .˝2/; then g ı � 2 W j

0 .˝1/:

Proof. The Cauchy estimates give (since � is bounded) that

ˇ̌
ˇ̌@˛�`
@z˛

.z/

ˇ̌
ˇ̌ � C � .ı1.z//�j˛j ; ` D 1; : : : ; n (2.1.12.1)
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and

jr��1.w/j � C.ı2.w//
�1; (2.1.12.2)

where � D .�1; : : : ; �n/: We will prove that

C � ı1.z/ � ı2.�.z//: (2.1.12.3)

Then Lemma 2.1.9 gives the result.
To prove (2.1.12.3), let � be a smooth strictly plurisubharmonic defining function

for˝1: Then �ı��1 is a smooth plurisubharmonic function on˝2: Since � vanishes
on @˝1 and since ��1 is proper, we conclude that � ı ��1 extends continuously to
˝2: If P 2 @˝2 and �P is the unit outward normal to @˝2 at P; then Hopf’s lemma
implies that the (lower) one-sided derivative .@=@�P /.� ı ��1/ satisfies

@

@�P
.� ı ��1.P // � C:

So, for w D P 	 ��P ; � small, it holds that

	� ı ��1.w/ � C � ı2.w/:

These estimates are uniform in P 2 @˝2: Using the comparability of j�j and ı1
yields

Cı1.�
�1.w// � ı2.w/:

Setting z D ��1.w/ now gives

C 0ı1.z/ � ı2.�.z//;

which is (2.1.12.3).

Exercise for the Reader: Let ˝ �� C
n be a smoothly bounded domain. Let

j 2 N. There is an N D N.j / so large that g 2 W N
0 implies that g vanishes

to order j on @˝:

Lemma 2.1.13. The function u is in C1.˝1/:

Proof. It suffices to show that u 2 W j .˝1/; every j: So fix j: Let m D
m.j / as in Condition R: According to (2.1.12.1), ju.z/j � Cı1.z/�2n: Then, by
Lemma 2.1.12 and the Exercise for the Reader following it, there is a J so large
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that g 2 W mCJ
0 .˝2/ implies u � .g ı �/ 2 W m.˝1/: Choose, by Lemma 2.1.7, a

g 2 W mCJ
0 .˝2/ such that P2g � 1: Then Lemma 2.1.10 yields

P1.u � .g ı �// D u:

By Condition R, it follows that u 2 W j .˝1/:

Lemma 2.1.14. The function u is bounded from 0 on ˝1:

Proof. By symmetry, we may apply Lemma 2.1.13 to ��1 and det JC.��1/ D 1=u:
We conclude that 1=u 2 C1.˝2/: Thus u is nonvanishing on ˝:

Proof of the Fefferman’s Theorem (Theorem 2.1.3): Use the notation of the
proof of Lemma 2.1.12. Choose g1; : : : ; gn 2 W mCJ

0 .˝2/ such that P2gi .w/ D wi
(here wi is the i th coordinate function). Then Lemma 2.1.10 yields that u � �i 2
W j .˝1/; i D 1; : : : ; n: By Lemma 2.1.12, �i 2 W j .˝1/; i D 1; : : : ; n: By
symmetry, ��1 2 W j .˝2/: Since j is arbitrary, the Sobolev embedding theorem
finishes the proof.

It is important to understand the central role of Condition R in this proof.
With some emendations, the proof we have presented shows that, if ˝1;˝2 �
� C

n are smoothly bounded, pseudoconvex, and both satisfy Condition R, then
a biholomorphic mapping from ˝1 to ˝2 extends smoothly to the boundary (in
fact Bell [BEL1] has shown that it suffices for just one of the domains to satisfy
Condition R). Condition R is known to hold on domains that have real analytic
boundaries (see Diederich and Fornæss [DIF2]), and more generally on domains
of finite type (see [CAT1, CAT2]). There are a number of interesting examples of
non-pseudoconvex domains on which Condition R fails (see Barrett [BAR1] and
Kiselman [KIS]). It had been conjectured that Condition R holds on all smoothly
bounded pseudoconvex domains. But Christ [CHR1] showed that in fact Condition
R fails on the Diederich–Fornæss worm domain (which is smoothly bounded and
pseudoconvex).

Lempert [LEM1] has derived a sharp boundary regularity result for biholomor-
phic mappings of strictly pseudoconvex domains with Ck boundary. Pinchuk and
Tsyganov [PIT] have an analogous result. The correct conclusion turns out to be
that there is a loss of smoothness in some directions. So the sharp regularity result
is formulated in terms of nonisotropic spaces. It is too technical to describe here.

2.2 Boundary Behavior of the Bergman Metric

The Bergman metric on the disc D is given by

gjk D @

@z

@

@z
logK.z; z/ D @

@z

@

@z

�	 log� 	 2 log.1 	 jzj2/ D 2

.1 	 jzj2/2 :
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Thus the length of a curve 	 W Œ0; 1
 ! D is given by

`B.	/ D
Z 1

0

2k	 0.t/k
.1 	 j	.t/j2/ dt :

It is natural to wonder what one can say about the Bergman metric on a more
general class of domains. Let � � C be a bounded domain with C4 boundary, and
suppose for the moment that � is simply connected. Then the Riemann mapping
theorem tells us that there is a conformal mapping ˚ W � ! D. Of course then we
know that

K�.z; z/ D j˚ 0.z/j2KD.˚.z/; ˚.z// D j˚ 0.z/j2
� � .1 	 j˚.z/j2/2 :

Then the Bergman metric on � is given by

gjk D @

@z

@

@z
log

� j˚ 0.z/j2
� � .1 	 j˚.z/j2/2

�

D @

@z

@

@z

�
log j˚ 0.z/j2 	 log� 	 2 log.1 	 j˚.z/j2/ :

Of course j˚ 0.z/j is bounded and bounded from 0 (see [BEK]). Also the derivatives
of ˚ , up to order 3, are bounded. So the second derivative of log j˚ 0.z/j2 is a
bounded term. The second derivative of log� is of course 0.

The second derivative of the remaining (and most interesting) term may be
calculated to be

@2

@z@z
logK�.z; z/ D @2

@z@z

�	2 log.1 	 j˚.z/j2/

D @

@z

� 	2
1 	 j˚.z/j2 � �	˚ 0.z/˚.z/

�

D 2

.1 	 j˚.z/j2/2 �
h
	˚ 0

.z/˚.z/
i

� �	˚ 0.z/˚.z/


	 2

1 	 j˚.z/j2 �
h
	˚ 0.z/˚ 0

.z/
i
:

This in turn, after some simplification, equals

2j˚ 0.z/j2
.1 	 j˚.z/j2/2 : (2.2.1)

As previously noted, the numerator is bounded and bounded from 0. Hopf’s
lemma (see [KRA1]) tells us that .1 	 j˚.z/j2/ 
 dist@�.z/. So that the Bergman
metric on � blows up like the reciprocal of the square of the distance to the
boundary—just as on the disc.
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In the case that � has C2 boundary and is finitely connected—not necessarily
simply connected—then one may use the Ahlfors map (see [KRA5]) instead of the
Riemann mapping and obtain a result similar to that in (2.2.1). We omit the details.

Bremermann [BRE] showed that any domain in C
n with complete Bergman

metric is a domain of holomorphy. This is in fact not difficult, as one can use
the hypothesis of the completeness of the metric to confirm the Kontinuitätssatz
(see [KRA1]), hence derive pseudoconvexity. Bremerman also gave an example to
demonstrate that the converse is not true. However, Ohsawa [OHS] has shown that
any pseudoconvex domain with C1 boundary has complete Bergman metric. This
result is important both conceptually and practically. There is no analogous result
for either the Carathéodory or Kobayashi metrics.

In the paper [KOB1, Theorem 9.2], Kobayashi shows that any bounded analytic
polyhedron has complete Bergman metric.

2.3 The Biholomorphic Inequivalence of the Ball
and the Polydisc

In this section we give a Bergman-geometric proof of the following classical result
of Poincaré (Poincaré’s original proof was more group theoretic).

Theorem 2.3.1. There is no biholomorphic map of the bidisc D2.0; 1/ to the ball
B.0; 1/ � C

2:

Proof. Suppose, seeking a contradiction, that there is such a map. Since Möbius
transformations act transitively on the disc, pairs of them act transitively on the
bidisc. Therefore we may compose � with a self-map of the bidisc and assume that
� maps 0 to 0:

If Y 2 @B , then the disc dY D fz 2 B W z D �Y; � 2 C; j�j < 1g is a totally
geodesic submanifold of B (informally, this means that if P;Q are points of dY ,
then the geodesic connecting them in the Riemannian manifold dY is the same as
the geodesic connecting them in the Riemannian manifold B—see Kobayashi and
Nomizu [KON]).

By our discussion in the calculation of the Poincaré metric, we may conclude
that the geodesics, or paths of least length, emanating from the origin in the ball
are the rays �Y W t 7! tY: (This assertion may also be derived from symmetry
considerations.)

Likewise, if ˛; ˇ 2 C; j˛j D 1; jˇj D 1; then the disc e0 D f.�˛; �ˇ/ W � 2
Dg � D2.0; 1/ is a totally geodesic submanifold of D2.0; 1/: Again we may apply
our discussion of the Poincaré metric on the disc to conclude that the geodesic curve
emanating from the origin in the bidisc in the directionX D .˛; ˇ/ is ˛ˇ W t 7! tX:

A similar argument shows that the curve t 7! .t; 0/ is a geodesic in the bidisc.
Now if t 7! tX is one of the above-mentioned geodesics on the bidisc, then it

will be mapped under � to a geodesic t 7! tY in the ball. If 0 < t1 < t2 < 1, then
the points t1X; t2X 2 D2 will be mapped to points t 01Y; t 02Y 2 B and it must be that
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0 < t 01 < t 02 < 1 since � is an isometry hence must map the point t2X to a point
further from the origin than it maps t1X (because t2X is further from the origin than
t1X ). It follows that the limit

lim
t!1�

�.tX/

exists for every choice of X and the limit lies in @B: After composing � with a
rotation, we may suppose that f�.t.1; 0//g terminates at .1; 0/:

Now consider the function f .z1; z2/ D .z1 C 1/=2 on B: This function has the
property that f .1; 0/ D 1; f is holomorphic on a neighborhood of B; and jf .z/j <
1 for z 2 B

Pf.1; 0/g: For 0 < r < 1 we invoke the mean-value property for a
harmonic function to write

1

2�

Z 2�

0

f ı �.r; rei� /d� D f ı �.r; 0/: (2.3.1.1)

As r ! 1� the right-hand side tends to limt!1� f .t; 0/ D 1: However, each of the
paths r ! .r; rei� / is a geodesic in the bidisc, as discussed above, and for different
� 2 Œ0; 2�/ they are distinct. Thus the curves r ! �.r; rei� / have distinct limits
in @B; and these limits will be different from the point .1; 0/ 2 @B: In particular,
limr!1� f ı �.r; rei� / exists for each � 2 Œ0; 2�/ and assumes a value of modulus
strictly less than 1:

By the Lebesgue dominated convergence theorem, we may pass to the limit as
r ! 1� in the left side of (2.3.1.1) to obtain a limit that must be strictly less than
one in absolute value. That is the required contradiction.

Exercises

1. Let us construct an invariant metric on the discD in the complex plane by hand.
Take it that the length of the vector h1; 0i at the base point 0 is 1. Now use the
conformal invariance of the metric to calculate the length of any other vector at
any other base point. Of course the metric that you obtain in this way should be
(a constant multiple of) the Poincaré metric.

2. Imitate Exercise 1 for the unit ball in C
n.

3. Consider the domain � D f� 2 C W Re � < 0 or Im � < 0g. This domain is
conformally equivalent to the upper half plane, which is in turn conformally
equivalent to the unit disc. Therefore one can calculate the Bergman kernel for
� using its mapping invariance property. What can you say about the boundary
behavior of this kernel at the origin? What can you say about the boundary
behavior of the Bergman metric at the origin?

4. Calculate the Bergman kernel and metric for the punctured disc D0 � f� 2 C W
0 < j�j < 1g. How do they differ from the Bergman kernel and metric for the
usual disc D?
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Calculate the Bergman kernel and metric for the punctured ball B 0 � fz 2 C
n W

0 < jzj < 1g. How do they differ from the Bergman kernel and metric for the
usual ball B?

5. Use the results from the text about the Bergman kernel for the annulus to
calculate the Bergman metric on the annulus.

6. Let � D B.0; 1/ n B.1; 1=2/, where B.P; r/ denotes the open ball with center
P and radius r . Estimate the distance from the origin to the point .1=2; 0/ in
the Bergman metric of �.

7. The infinitesimal Kobayashi–Royden metric on a domain � � C
n is defined

by FK W ˝ � C
n ! R, where

FK.z; �/ � inff˛ W ˛ > 0 and 9f 2 ˝.B/
with f .0/ D z;

	
f 0.0/



.e1/ D �=˛g

D inf

� j�j
j.f 0.0//.e1/j W f 2 ˝.B/; .f 0.0//.e1/ is a

constant multiple of �g

D j�j
supfj.f 0.0//.e1/j W f 2 ˝.B/; .f 0.0//.e1/ is a constant multiple of �g :

Use the Schwarz lemma to calculate the Kobayashi–Royden metric on the disc.
How does it compare with the Poincaré metric? Now calculate the Kobayashi–
Royden metric on the ball.

8. The infinitesimal Carathéodory metric on a domain � � C
n is defined by FC W

˝ � C
n ! R, where

FC .z; �/ D sup
f2B.˝/
f .z/D0

jf�.z/�j � sup
f2B.˝/
f .z/D0

ˇ̌
ˇ̌
ˇ̌
nX

jD1

@f

@zj
.z/ � �j

ˇ̌
ˇ̌
ˇ̌ :

Use the Schwarz lemma to calculate the Carathéodory metric on the disc. How
does it compare with the Poincaré metric? Now calculate the Carathéodory
metric on the ball.

9. Refer to Exercises 7 and 8 for terminology. Prove that the Carathéodory metric
is always less than or equal to the Kobayashi metric.

10. Refer to Exercises 7 and 8 for terminology. Prove that, if ˚ W �1 ! �2 is a
holomorphic mapping of complex domains, then its distance is non-increasing
in the Carathéodory metric. Prove an analogous statement for the Kobayashi–
Royden metric.



Chapter 3
Further Geometric and Analytic Theory

3.1 Bergman Representative Coordinates

The theory of the Bergman kernel gives rise to many important geometric invariants.
Among these are the not-very-well-known Bergman representative coordinates.
This is a local coordinate system in which a biholomorphic mapping is realized as a
linear mapping. Such a result, while initially quite startling, is in fact completely
analogous to the result in the Riemannian geometry regarding geodesic normal
coordinates. But geodesic normal coordinates are almost never holomorphic—
unless the Kähler metric is flat. By contrast, the Bergman representative coordinates
are always holomorphic. Our presentation in this section is inspired by [GKK].

The Bergman representative coordinates are of considerable intrinsic and theo-
retical interest. But they are also useful in understanding the boundary behavior of
biholomorphic mappings. And Greene–Krantz made good use of them in proving
their noted semicontinuity theorem (see Sect. 5.2).

The Bergman representative coordinates are also essential in the proof of Lu
Qi-Keng’s theorem on bounded domains with the Bergman metrics of constant
holomorphic sectional curvature. This result will be stated and proved in the present
section.

Now let ˝ be a bounded domain in Cn and let q be a point of ˝. The Bergman
kernel K˝.q; q/ on the diagonal is of course real and positive so that there is a
neighborhood U of q such that, for all z;w in U , K˝.z;w/ ¤ 0. Then for all z;w in
U , we define

bj .z/ D bj;q.z/ D @

@wj
log

K.z;w/

K.w;w/

ˇ̌
ˇ̌
wDq

:

Note that these coordinates are well defined, independent of the choice of logarith-
mic branch. Each representative coordinate bj .z/ is clearly a holomorphic function
of z.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 3,
© Springer Science+Business Media New York 2013
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The mapping

z 7	! 	
b1.z/; : : : ; bn.z/


 2 C
n

is defined and holomorphic in a neighborhood of the point q (a neighborhood on
which the kernel does not vanish). Note also that .b1.q/; : : : ; bn.q// D .0; : : : ; 0/.

We are hoping to use these functions as holomorphic local coordinates in a
neighborhood of q. By the holomorphic inverse function theorem, these functions
give local coordinates if the holomorphic Jacobian

det

�
@bj

@zk

�
j;kD1;:::;n

is nonzero at q.
But in fact the nonvanishing of this determinant at q is an immediate consequence

of the fact that the Bergman metric is positive definite. To see this relationship,
observe that

@bj

@zk

ˇ̌
ˇ̌
zDq

D @

@zk

�
@

@wj
logK.z;w/

�ˇ̌
ˇ̌
zDwDq

D @2

@zk@zj
logK.z; z/

ˇ̌
ˇ̌
zDq

:

This last term is of course the Hermitian inner product
D @
@zk

;
@

@zj

Eˇ̌
ˇ
q

with respect to

the Bergman metric. Thus the expression

det

�
@bj

@zk

�ˇ̌
ˇ̌
q

is the determinant of the inner product matrix of a positive definite Hermitian inner
product. Hence this determinant is positive.

The utility of the new coordinates in studying biholomorphic mappings comes
from the following:

Lemma 3.1.1. Let ˝1 and ˝2 be two bounded domains in C
n with q1 2 ˝1 and

q2 2 ˝2 fixed points. Denote by b11; : : : ; b
1
n the Bergman coordinates as defined

near q1 in ˝1 and b21; : : : ; b
2
n the Bergman coordinates defined in the same way

near q2 in ˝2. Suppose that there is a biholomorphic mapping F W ˝1 ! ˝2 with
F.q1/ D q2. Then the function defined near 0 2 C

n by

b1 coordinate ˛ 7	! b2 coordinate of the image of the ˛-point under F

is a C-linear transformation.
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In short, we say that the biholomorphic mapping F is linear when expressed in the
Bergman representative coordinates bj . In point of fact, the linear mapping induced
by the introduction of the Bergman representative coordinates is nothing other than
the complex Jacobian of the mapping F at the point q1.

Proof of the Lemma. To avoid confusion, we write .z1; : : : ; zn/ and
.w1; : : : ;wn/ for the C

n-coordinates in ˝1 and .Z1; : : : ; Zn/ and .W1; : : : ;Wn/ for
the C

n-coordinates in ˝2. Now observe that, for each j D 1; : : : ; n,

@

@wj
log

K˝2.F.z/; F .w//

K˝2.F.w/; F .w//
D @

@wj
log

K˝1.z;w/

K˝1.w;w/
:

The reason for this identity is

K˝2.F.z/; F .w//

K˝2.F.w/; F .w//
D K˝1.z;w/

K˝1.w;w/
� (a holomorphic function of z)

� (a holomorphic function of w) :

This last follows from the transformation law. Thus we obtain (from the complex
chain rule) that

b1j .z/
defD @

@wj
log

K˝1.z;w/

K˝1.w;w/

ˇ̌
ˇ̌
wDq1

D @

@wj

�
logK˝2.F.z/; F .w// 	 logK˝2.F.w/; F .w//

�ˇ̌ˇ̌
ˇ
wDq1

D
X
k

"
@F

k

@wj
� @

@W k

log
K˝2.F.z/;W /

K˝2.W;W /

#ˇ̌
ˇ̌
ˇ
WDF.q1/

;

where F k is the kth coordinate of F.w1; : : : ;wk/. But this last expression is exactly

X
k

@F
k

@wj

ˇ̌
ˇ̌
wDq1

� b2k.F.z// :

Hence

b1j .z/ D
X
k

@F
k

@wj

ˇ̌
ˇ̌
wDq1

� b2k.F.z// :

Since the Jacobian matrix .@F k=@wj / of F is invertible at q, it follows that the
b2k.F / are linear functions of the b1j coordinates.
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The reader may wish to try calculating the Bergman representative coordinates
on the unit ball. You may then use these to rediscover the Möbius transformations
on the ball.

Note that the whole concept of representative coordinates extends essentially
automatically to complex manifolds for which the Bergman metric construction
for .n; 0/ forms already discussed above yields a positive definite metric. The
construction can still be done locally, using general local holomorphic coordinates,
and it remains true that the Bergman coordinates linearize holomorphic mappings.

3.2 The Berezin Transform

3.2.1 Preliminary Remarks

Let ˝ � C
n be a bounded domain (i.e., a connected open set) with C2 boundary.

Following the general rubric of “Hilbert space with reproducing kernel” laid down
by Nachman Aronszajn [ARO], both the Bergman spaceA2.˝/ and the Hardy space
H2.˝/ have reproducing kernels.

The Bergman kernel (for A2) and the Szegő kernel (for H2) both have the
advantage of being canonical. But neither is positive, and this makes them tricky
to handle. The Bergman kernel can be treated with the theory of the Hilbert integral
(see [PHS]), and the Szegő kernel can often be handled with a suitable theory of
singular integrals (see [KRA2]).

It is a classical construction of Hua (see [HUA]) that one can use the Szegő
kernel to produce another reproducing kernel P.z; �/ which also reproduces H2

but which is positive. In this sense it is more like the Poisson kernel of harmonic
function theory. In point of fact, this so-called Poisson–Szegő kernel coincides
with the Poisson kernel when the domain is the disc D in the complex plane
C. Furthermore, the Poisson–Szegő kernel solves the Dirichlet problem for the
invariant Laplacian (i.e., the Laplace–Beltrami operator for the Bergman metric)
on the ball in C

n. Unfortunately a similar statement about the Poisson–Szegő kernel
cannot be made on any other domain (although we shall explore substitute results
on strictly pseudoconvex domains later in this book). See [GRA1, GRA2] for the
full story of these matters.

We want to develop these ideas with the Szegő kernel replaced by the Bergman
kernel. This notion was developed independently by Berezin [BERE] in the context
of quantization of Kähler manifolds. Indeed, one assigns to a bounded function on
the manifold the corresponding Toeplitz operator. This process of assigning a linear
operator to a function is called quantization. A nice exposition of the ideas appears
in [PEE]. Further basic properties may be found in [ZHU].

Approaches to the Berezin transform are often operator-theoretic (see [ENG1,
ENG2]), or sometimes geometric [PEE]. Our point of view here will be more
function-theoretic. We shall repeat (in perhaps new language) some results that
are known in other contexts. And we shall also enunciate and prove new results.
We hope that the mix serves to be both informative and useful.
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3.2.2 Introduction to the Poisson–Bergman Kernel

In the seminal work [HUA], Hua proposed a program for producing a positive kernel
from a canonical kernel. He defined

P.z; �/ D jS.z; �/j2
S.z; z/

;

where S is the standard Szegő kernel on a given bounded domain ˝. Now we have

Proposition 3.2.1. Let ˝ be a bounded domain with C2 boundary and S its Szegő
kernel. With P.z; �/ as defined above, and with f 2 C.˝/ holomorphic on ˝,
we have

f .z/ D
Z
@˝

P.z; �/f .�/ d�.�/

for all z 2 ˝.

Proof: See Proposition 1.2.9.

The integral with kernel P.z; �/ is called the Berezin transform.
It is natural to ask whether the result of the proposition extends to all functions

f 2 H2.˝/. For this, it would suffice to show that C.˝/ \ O.˝/ is dense in
H2.˝/. In fact this density result is known to be true, because of the regularity
theory for the @b operator, when ˝ is either strictly pseudoconvex or of finite type
in the sense of Catlin–D’Angelo–Kohn. One can reason as follows (and we thank
Harold Boas for this argument): Let f 2 H2.˝/. Then certainly f 2 L2.@˝/

and, just by measure theory, one can approximate f in L2 norm by a function ' 2
C1.@˝/. Let ˚ D PS', the Szegő projection of '. Then, since PS is a continuous
operator on L2.@˝/, the function ˚ is an L2.@˝/ approximant of f . But it is also
the case, by regularity theory of the @b operator, that ˚ D PS' is in C1.˝/. That
proves the needed approximation result. Of course a similar argument would apply
on any domain on which the Szegő projection maps smooth functions to smooth
functions. See [STE2] for some observations about this matter.

Now Hua did not consider his construction for the Bergman kernel, but in fact it
is just as valid in that context. We may define

B.z; �/ D jK.z; �/j2
K.z; z/

:

We call this the Poisson–Bergman kernel. It is also sometimes called the Berezin
kernel. Then we have
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Proposition 3.2.2. Let ˝ be a bounded domain and K its Bergman kernel. With
B.z; �/ as defined above, and with f 2 C.˝/ holomorphic on ˝, we have

f .z/ D
Z
@˝

B.z; �/f .�/ dV.�/

for all z 2 ˝.

The proof is just the same as that for Proposition 1.2.9, and we omit the details.
One of the purposes of the present discussion is to study properties of the Poisson–
Bergman kernel B.

Of course the Poisson–Bergman kernel is real, so it will also reproduce the real
parts of holomorphic functions. Thus in one complex variable, the integral repro-
duces harmonic functions. In several complex variables, it reproduces pluriharmonic
functions.

Again, it is natural to ask under what circumstances Proposition 3.2.2 holds for
all functions in the Bergman space A2.˝/. The question is virtually equivalent
to asking when the elements that are continuous on ˝ are dense in A2. Catlin
[CAT3] has given an affirmative answer to this query on any smoothly bounded
pseudoconvex domain.

One of the features that makes the Bergman kernel both important and useful
is its invariance under biholomorphic mappings. This fact is useful in conformal
mapping theory, and it also gives rise to the Bergman metric. The fundamental result
is this:

Proposition 3.2.3. Let ˝1;˝2 be domains in C
n: Let f W ˝1 ! ˝2 be

biholomorphic. Then

det JCf .z/K˝2.f .z/; f .�//det JCf .�/ D K˝1.z; �/:

Here JCf is the complex Jacobian matrix of the mapping f . Refer to [KRA1,
KRA4] for more on this topic.

It is useful to know that the Poisson–Bergman kernel satisfies a similar transfor-
mation law:

Proposition 3.2.4. Let ˝1;˝2 be domains in C
n: Let f W ˝1 ! ˝2 be

biholomorphic. Then

B˝2.f .z/; f .�//jdet JCf .�/j2 D B˝1.z; �/ :

Proof: Of course we use the result of Proposition 3.2.3. Now
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B˝1.z; �/ D jK˝1.z; �/j2
K˝1.z; z/

D jdet JCf .z/ �K˝2.f .z/; f .�// � det JCf .�/j2
det JCf .z/ �K˝2.f .z/; f .z// � det JCf .z/

D jdet JCf .�/j2 � jK˝2.f .z/; f .�//j2
K˝2.f .z/; f .z//

D jdet JCf .�/j2 � B˝2.f .z/; f .�// :

We conclude this section with an interesting observation about the Berezin
transform—see [ZHU].

Proposition 3.2.5. The operator

Bf .z/ D
Z
B

B.z; �/f .�/ dV.�/ ;

acting on L1.B/, is univalent.

Proof: In fact it is useful to take advantage of the symmetry of the ball. We can
rewrite the Poisson–Bergman integral as

Z
B

f ı ˚z.�/ dV.�/ ;

where ˚z is a suitable automorphism of the ball. Then it is clear that this integral
can be identically zero in z only if f � 0. That completes the proof.

Another, slightly more abstract, way to look at this matter is as follows (we thank
Richard Rochberg for this idea, and see also [ENG1]). Let f be any L1 function on
B . For w 2 B define

gw.�/ D 1

.1 	 w � �/nC1 :

If f is bounded on the ball, let

Tf W g 7! PB.fg/ :

We may write the Berezin transform now as

ƒf .w; z/ D hTf gz; gwi
hgw; gwi :
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This function is holomorphic in z and conjugate holomorphic in w. The statement
that the Berezin transform Bf .z/ � 0 is the same as ƒf .z; z/ D 0. But it is a
standard fact (see [KRA1]) that we may then conclude that ƒf .w; z/ � 0. Then
Tf gz � 0 and so f � 0. So the Berezin transform is univalent.

3.2.3 Boundary Behavior

It is natural to want information about the boundary limits of potentials of the form
Bf for f 2 L2.˝/. We begin with a simple lemma:

Lemma 3.2.6. Let ˝ be a bounded domain and B its Poisson–Bergman kernel. If
z 2 ˝ is fixed, then

Z
˝

B.z; �/ dV.�/ D 1 :

Proof: Certainly the function f .�/ � 1 is an element of the Bergman space on ˝.
As a result,

1 D f .z/ D
Z
˝

B.z; �/f .�/ dV.�/ D
Z
˝

B.z; �/ dV.�/

for any z 2 ˝.

Our first result is as follows:

Proposition 3.2.7. Let ˝ be the ball B in C
n. Then the mapping

f 7!
Z
˝

B.z; �/f .�/ dV.�/

sends Lp.˝/ to Lp.˝/, 1 � p � 1.

Proof: We know from the lemma that

kB.z; � /kL1.˝/ D 1

for each fixed z. An even easier estimate shows that

kB. � ; �/kL1.˝/ � 1

for each fixed �. Now Schur’s lemma, or the generalized Minkowski inequality,
gives the desired conclusion. [Note here that we made decisive use of the fact that
B.z; �/ � 0.]
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Proposition 3.2.8. Let ˝ � C
n be the unit ball B . Let f 2 C.˝/. Let F D Bf .

Then F extends to a function that is continuous on ˝. Moreover, if P 2 @˝, then

lim
˝3z!P

F.z/ D f .P / :

Proof: Let � > 0. Choose ı > 0 such that if z;w 2 ˝ and jz 	 wj < ı, then
jf .z/ 	 f .w/j < �. Let M D sup�2˝ jf .�/j. Now, for z 2 ˝, P 2 @˝, and
jz 	 P j < �, we have that

jF.z/ 	 f .P /j D
ˇ̌
ˇ̌Z
˝

B.z; �/f .�/ dV.�/ 	 f .P /
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z
˝

B.z; �/f .�/ dV.�/ 	
Z
˝

B.z; �/f .P / dV.�/

ˇ̌
ˇ̌

�
Z

�2˝
j��P j<ı

B.z; �/jf .�/ 	 f .P /j dV.�/

C
Z

�2˝
j��P j�ı

B.z; �/jf .�/ 	 f .P /j dV.�/

�
Z

�2˝
j��P j<ı

B.z; �/ � � dV.�/C
Z

�2˝
j��P j�ı

B.z; �/ � 2M dV.�/

� I C II :

Now the lemma tells us that I D �. Also we know that the Poisson–Bergman kernel
for the ball is

B.z; �/ D cn
.1 	 jzj2/nC1

j1 	 z � �j2nC2 :

Thus by inspection, B.z; �/ ! 0 as z ! P for j�	P j � ı. Thus II is smaller than
� as soon as z is close enough to P .

In summary, for z sufficiently close to P , jF.z/ 	 f .P /j < 2�. That is what we
wished to prove.

Arazy and Engliš have in fact shown that the last result is true on any pseudoconvex
domain for which each boundary point is a peak point (for the algebra A.˝/ of
functions continuous on the closure and holomorphic inside). Thus the result is
true in particular on strictly pseudoconvex domains (see [KRA1]) and finite type
domains in C

2 (see [BEF1]).
Here is another way to look at the matter on strictly pseudoconvex domains.

In fact our observation, at the end of the proof of the last proposition, about the
vanishing of B.z; �/ for z ! P and j� 	 P j � ı is a tricky point and not generally
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known. On a strictly pseudoconvex domain ˝, we have Fefferman’s asymptotic
expansion [FEF1, Part I]. This says that, in suitable local holomorphic coordinates
near a boundary point P , we have

K˝.z; �/ D cn

.1 	 z � �/nC1 C k.z; �/ � log j1 	 z � �j C E.z; �/ : (3.2.9)

Thus using an argument quite similar to the one that we carry out in detail in
Sect. 1.2 for the Poisson–Szegő kernel, one can obtain an asymptotic expansion for
the Poisson–Bergman kernel. One sees that, in local coordinates near the boundary.

B˝.z; �/ D cn � .1 	 jzj2/nC1

j1 	 z � �j2nC2 C E.z; �/ ;

where E is a kernel that induces a smoothing operator. In particular, the singularity
of E will be measurably less than the singularity of the lead term. So it will still be
the case that B.z; �/ ! 0 as z ! P 2 @˝ and j� 	 P j � ı. So we have:

Proposition 3.2.10. Let ˝ � C
n be a smoothly bounded, strictly pseudoconvex

domain in C
n. Let f 2 C.˝/. Then the function Bf extends to be continuous on

˝. Moreover, if P 2 @˝, then

lim
˝3z!P

Bf .z/ D f .P / :

It is natural, from the point of view of measure theory and harmonic analysis, to
want to extend the result of Proposition 3.2.10 to a broader class of functions. To
this end we introduce a maximal function to use as a tool.

Definition 3.2.11. Let ˝ be a smoothly bounded, strictly pseudoconvex domain in
C
n. If z; � 2 ˝, then we set

�.z; �/ D j1 	 z � �j1=2 :

Proposition 3.2.12. When ˝ D B , the unit ball, then the function � is a metric
on @B . For a more general smoothly bounded, strictly pseudoconvex domain, the
function � is a pseudometric. That is to say, there is constant C � 1 such that

�.z; �/ � C
	
�.z; �/C �.�; �/



:

Proof: The first assertion is Proposition 6.5.1 in [KRA4]. The second assertion is
proved in [KRA1, pp. 357–358]. We shall provide the details of this argument in
Proposition 3.5.2.

Proposition 3.2.13. The balls

ˇ2.z; r/ D f� 2 ˝ W �.z; �/ < rg ;

together with ordinary Euclidean volume measure dV , form a space of homoge-
neous type in the sense of Coifman and Weiss [COW].
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Proof: This is almost immediate from the preceding proposition, but details may
be found in [KRA1, Sect. 8.6].

Definition 3.2.14. For z 2 ˝ and f 2 L1loc.˝/ we define

Mf .z/ D sup
r>0

1

V .ˇ2.z; r/

Z
ˇ2.z;r/

jf .�/j dV.�/ :

Theorem 3.2.15. The operator M is of weak type .1; 1/ and of strong type .p; p/,
1 < p � 1.

Proof: Again this is a standard consequence of the previous proposition in the
context of spaces of homogeneous type. See [COW].

Theorem 3.2.16. Let ˝ be the unit ball B in C
n. Let f be a locally integrable

function on ˝. Then there is a constant C > 0 such that, for z 2 ˝,

jBf .z/j � C � Mf .z/ :

Proof: It is easy to see that j1	 z � �j � .1=2/.1	 jzj2/. Therefore we may perform
these standard estimates:

jBf .z/j D
ˇ̌
ˇ̌Z
˝

B.z; �/f .�/ dV.�/

ˇ̌
ˇ̌

�
1X

jD�1

Z
2j .1�jzj2/�j1�z��j�2jC1.1�jzj2/

B.z; �/jf .�/j dV.�/

�
1X

jD�1

Z
j1�z��j�2jC1.1�jzj2/

.1 	 jzj2/nC1

Œ2j .1 	 jzj2/
2nC2 dV.�/

� C �
1X

jD�1
2�j.nC1/ �

�
1

.1 	 jzj2/nC12.jC1/.nC1/

� Z
j1�z��j�2jC1.1�jzj2/

jf .�/j dV.�/

� C �
1X

jD�1
2�j.nC1/ �

"
1

V.ˇ2.z;
p
2jC1.1 	 jzj2//

#Z
ˇ2.z;

p
2jC1.1�jzj2/

jf .�/j dV.�/

(3.2.16.1)

The last line is majorized by

� C 0 �
1X

jD�1
2�j.nC1/Mf .z/

� C � Mf .z/ :
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Theorem 3.2.17. Let˝ be the unit ball B in C
n. Let f be an Lp.˝; dV / function,

1 � p � 1. Then Bf has radial boundary limits almost everywhere on @˝.

Proof: The proof follows standard lines, using Theorems 3.2.15 and 3.2.16. See the
detailed argument in [KRA1, Theorem 8.6.11].

In fact a slight emendation of the arguments just presented allows a more refined
result.

Definition 3.2.18. Let P 2 @B and ˛ > 1. Define the admissible approach region
of aperture ˛ by

A˛.P / D fz 2 B W j1 	 z � �j < ˛.1 	 jzj2/g :

Admissible approach regions are a new type of region for Fatou-type theorems.
These were first introduced in [KOR1, KOR2] and generalized and developed in
[STE2] and later in [KRA6]. Now we have

Theorem 3.2.19. Let f be anLp.B/ function, 1 � p � 1. Then, for almost every
P 2 @B ,

lim
A˛.P /3z!P

Bf .z/

exists.

In fact, using the Fefferman asymptotic expansion (as discussed in detail in the
next section), we may imitate the development of Theorems 3.2.15 and 3.2.16 and
prove a result analogous to Theorem 3.2.17 on any smoothly bounded, strictly
pseudoconvex domain. We omit the details, as they would repeat ideas that we
present elsewhere in the present book for slightly different purposes.

3.3 Ideas of Fefferman

In the seminal paper [FEF1, Part I], Charles Fefferman produced an asymptotic
expansion for the Bergman kernel of a strictly pseudoconvex domain. He used
this expansion to get detailed information about the boundary behavior of cer-
tain“pseudotransversal” geodesics in the metric; this data in turn was used to show
that biholomorphic mappings of strictly pseudoconvex domains continue smoothly
to the boundaries.

Fefferman’s ideas have been quite influential. For instance, Paul Klembeck
[KLE] used the Fefferman expansion to calculate the boundary asymptotics of
Bergman metric curvature on a strictly pseudoconvex domain. See Chap. 7 below.
This in turn led him to a new and very natural proof of the Bun Wong–Rosay
theorem:
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Theorem: Let ˝ 
 C
n be a bounded domain with C2 boundary. Let P 2 @˝ be a

point of strong pseudoconvexity. Suppose that 'j are biholomorphic self-maps of ˝ with
the property that there is a point X 2 ˝ such that limj!1 'j .X/ D P . Then ˝ is
biholomorphic to the unit ball Bn in C

n.

Greene and Krantz [GRK1, GRK2, GRK3] showed that the Fefferman asymptotic
expansion deforms stably under smooth deformation of the boundary of a strictly
pseudoconvex domain ˝ � C

n. They used that information to prove a variety
of results about the Bergman geometry and also about automorphism groups of
domains. We state just two of their results here:

Theorem: Let ˝0 
 C
n be a fixed strictly pseudoconvex domain with smooth boundary.

If˝ is another smoothly bounded strictly pseudoconvex domain with boundary sufficiently
close to @˝ in the smooth domain topology, then the automorphism group (group of
biholomorphic self-mappings of ˝) of ˝ is a subgroup of the automorphism group of ˝0.
Indeed, there is a smooth mapping ˚ W ˝ ! ˝0 such that

Aut.˝/ 3 ' 7�! ˚ ı ' ı ˚�1 2 Aut.˝0/

conjugates the automorphism group of ˝ into the automorphism group of ˝0.

Theorem: Let ˝ 
 C
n be a smoothly bounded domain which is sufficiently close to the

unit ball Bn 
 C
n in the smooth domain topology and is biholomorphically inequivalent

to the ball (such domains are generic—see [GRK1, GRK2]). Then there is a holomorphic
embedding ‰ W ˝ ! C

n so that the automorphism group of ˝0 	 ‰.˝/ is the restriction
to ˝0 of a subgroup of the unitary group on n letters.

We cannot provide all the details of the Fefferman’s construction here. It is a long
and tedious argument. But we can discuss and describe the asymptotic expansion
and indicate some of its uses.

So fix a strictly pseudoconvex domain ˝ with smooth boundary and fix a point
P 2 @˝. For z and � in ˝ and sufficiently near P , Fefferman tells us that (in
suitable local coordinates)

K˝.z; �/ D cn

.1 	 z � �/nC1 C k.z; �/ � log j1 	 z � �j C E.z; �/ : (3.3.1)

Here E is an error term that is smaller, in a measurable sense, than the lead terms.
One can see from formula (3.3.1) that calculations with the Bergman kernel of

a strictly pseudoconvex domain are tantamount to calculations with the Bergman
kernel for the ball (up to a calculable and estimable error).1

1The logarithmic term was one of the big surprises of the Fefferman’s work. It was quite
unexpected. And it does not conform to the paradigm that “the Bergman kernel of a strictly
pseudoconvex domain is just like that for the ball.” But the logarithmic term has only a weak
singularity and is easily estimated. Fefferman provided, in his paper [FEF1, Part I], a concrete
example of a domain in which the logarithmic term actually arises. See Sect. 6.7 below. And Burns
later proved that the logarithmic term is generic. That is to say, if ˝ is a strictly pseudoconvex
domain with smooth boundary and none of the Fefferman asymptotic expansions near any of
the boundary points have logarithmic terms, then ˝ is biholomorphic to the unit ball B . Burns
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Thus one can prove, in the vein of Klembeck, that the curvature tensor of the
Bergman metric is asymptotically, as the base point p approaches the boundary of
the domain, equal to the curvature tensor for the Bergman metric of the ball. Because
the automorphism group of the ball acts transitively on the unit sphere bundle in the
tangent bundle to the ball, it follows that the latter curvature tensor must be constant.

3.4 Results on the Invariant Laplacian

If g D .gjk/ is a Riemannian metric on a domain ˝ in complex Euclidean space,
then there is a second-order partial differential operator, known as the Laplace–
Beltrami operator, that is invariant under isometries of the metric. In fact, if g
denotes the determinant of the metric matrix g, and if .gjk/ denotes the inverse
matrix, then this partial differential operator is defined to be

L D 2

g

X
j;k

�
@

@zj

�
ggjk

@

@zk

�
C @

@zk

�
ggjk

@

@zk

��
:

Now of course we are interested in artifacts of the Bergman theory. If ˝ � C
n is

a bounded domain and K D K˝ its Bergman kernel, then it is well known (see
[KRA1]) that K.z; z/ > 0 for all z 2 ˝. Then it makes sense to define

gjk.z/ D @2

@zj @zk
logK.z; z/

for j; k D 1; : : : ; n. Then Proposition 1.1.14 can be used to demonstrate that this
metric—which is in fact a Kähler metric on ˝—is invariant under biholomorphic
mappings of ˝. In other words, any biholomorphic ˚ W ˝ ! ˝ is an isometry in
the metric g. This is the celebrated Bergman metric.

If ˝ � C
n is the unit ball B , then the Bergman kernel is given by

KB.z; �/ D 1

V.B/
� 1

.1 	 z � �/nC1 ;

where V.B/ denotes the Euclidean volume of the domain B . Then

logK.z; z/ D 	 logV.B/ 	 .nC 1/ log.1 	 jzj2/:

never published this result. Boutet de Monvel [BOU] in dimension 2 and Robin Graham [GRA3]
in general gave rigorous proofs of the result. See also the work of Hirachi [HIR1]. There are
unbounded domains and also roughly bounded domains on which the analogue of this result for
the Szegő is known to fail—see [HIR2].
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Further,

@

@zj

		.nC 1/ log.1 	 jzj2/
 D .nC 1/
zj

1 	 jzj2

and

@2

@zj @zk

		.nC 1/ log.1 	 jzj2
 D .nC 1/

�
ıjk

1 	 jzj2 C zj zk
.1 	 jzj2/2

�

D .nC 1/

.1 	 jzj2/2
�
ıjk.1 	 jzj2/C zj zk



� gjk.z/:

When n D 2 we have

gjk.z/ D 3

.1 	 jzj2/2
�
ıjk.1 	 jzj2/C zj zk


:

Thus

	
gjk.z/


 D 3

.1 	 jzj2/2
�
1 	 jz2j2 z1z2
z2z1 1 	 jz1j2

�
:

Let

�
gjk.z/

�2
j;kD1

represent the inverse of the matrix

�
gjk.z/

�2
j;kD1

:

Then an elementary computation shows that

�
gjk.z/

�2
j;kD1

D 1 	 jzj2
3

�
1 	 jz1j2 	z2z1
	z1z2 1 	 jz2j2

�
D 1 	 jzj2

3

	
ıjk 	 zj zk



j;k
:

Let

g � det

�
gjk.z/

�
:
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Then

g D 9

.1 	 jzj2/3 :

Now let us calculate. If
	
gjk


2
j;kD1 is the Bergman metric on the ball in C

2, then we
have

X
j;k

@

@zj

	
ggjk


 D 0

and

X
j;k

@

@zj

	
ggjk


 D 0:

We verify these assertions in detail in dimension 2: Now

ggjk D 9

.1 	 jzj2/3 � 1 	 jzj2
3

.ıjk 	 zj zk/

D 3

.1 	 jzj2/2 .ıjk 	 zj zk/:

It follows that

@

@zj

�
ggjk

�
D 6zj
.1 	 jzj2/3

	
ıjk 	 zj zk


 	 3zk
.1 	 jzj2/2 :

Therefore

2X
j;kD1

@

@zj

�
ggjk

�
D

2X
j;kD1

�
6zj .ıjk 	 zj zk/

.1 	 jzj2/3 	 3zj
.1 	 jzj2/2

�

D 6
X
k

zk
.1 	 jzj2/3 	 6

X
j;k

jzj j2zk
.1 	 jzj2/3 	 6

X
k

zk
.1 	 jzj2/2

D 6
X
j

zj
.1 	 jzj2/2 	 6

X
k

zk
.1 	 jzj2/2

D 0:

The other derivative is calculated similarly.
Our calculations show that, on the ball in C

2;
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L � 2

g

X
j;k

�
@

@zj

�
ggjk

@

@zk

�
C @

@zk

�
ggjk

@

@zj

��

D 4
X
j;k

gjk
@

@zj

@

@zk

D 4
X
j;k

1 	 jzj2
3

	
ıjk 	 zj zk


 @2

@zk@zj
:

Now the interesting fact for us is encapsulated in the following proposition:

Proposition 3.4.1. The Poisson–Szegő kernel on the ball B solves the Dirichlet
problem for the invariant Laplacian L. That is to say, if f is a continuous function
on @B , then the function

u.z/ D
8<
:
R
@B

P.z; �/ � f .�/ d�.�/ if z 2 B

f .z/ if z 2 @B
is continuous on B and is annihilated by L on B .

This fact is of more than passing interest. In one complex variable, the study of
holomorphic functions on the disc and the study of harmonic functions on the disc
are inextricably linked because the real part of a holomorphic function is harmonic
and conversely. Such is not the case in several complex variables. Certainly the
real part of a holomorphic function is harmonic. But in fact it is more: Such a
function is pluriharmonic. For the converse direction, any real-valued pluriharmonic
function is locally the real part of a holomorphic function. This assertion is false if
“pluriharmonic” is replaced by “harmonic.”

And the result of Proposition 3.4.1 should not really be considered to be
surprising. For the invariant Laplacian is invariant under isometries of the Bergman
metric, hence invariant under automorphisms of the ball. And the Poisson–Szegő
kernels behave nicely under automorphisms. E. M. Stein was able to take advantage
of these invariance properties to give a proof of Proposition 3.4.1 using Godement’s
theorem—that any function that satisfies a suitable mean-value property must be
harmonic (i.e., annihilated by the relevant Laplace operator). See [STE2] for the
details.
Sketch of the Proof of Proposition 3.4.1 Now

Lu D L
Z
@B

P.z; �/ � f .�/ d�.�/ D
Z
@B

�
LzP.z; �/

�
� f .�/ d�.�/ :

Thus it behooves us to calculate LzP.z; �/. Now we shall calculate this quantity
for each fixed �. Thus without loss of generality, we may compose with a unitary
rotation and suppose that � D .1C i0; 0C i0/ so that (in complex dimension 2)

P D c2 � .1 	 jzj2/2
j1 	 z1j4 :
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This will make our calculations considerably easier.
By brute force, we find that

@P
@z1

D 	2.1 	 z1/.1 	 jzj2/ �
�	1C z1 C jz2j2

j1 	 z1j6
�

@2P
@z1@z1

D 	2
j1 	 z1j6 � �	jz1j2 	 jz1j2jz2j2 C 3jz2j2 	 z1jz2j2

	2jz2j4 	 1C z1 C z1 	 z1jz2j2


@2P
@z1@z2

D 	2.1 	 z1/

j1 	 z1j6 � �2z2 	 z2z1 	 2z2jz2j2 	 z2jz1j2


@2P
@z1@z2

D 	2.1 	 z1/

j1 	 z1j6 � �2z2 	 z2z1 	 2z2jz2j2 	 z2jz1j2


@P
@z2

D 	2z2 C 2jz1j2z2 C 2jz2j2z2
j1 	 z1j4

@2P
@z2@z2

D 	2C 2jz1j2 C 4jz2j2
j1 	 z1j4 (3.4.1.1)

Now we know that, in complex dimension two,

LzP.z; �/ D 4

3
.1� jzj2/ � .1� jz1j2/ � @

2Pz

@z1@z1
C 4

3
.1� jzj2/ � .�z1z2/ � @

2Pz

@z2@z1

C4

3
.1� jzj2/ � .�z2z1/ � @

2Pz

@z1@z2
C 4

3
.1� jzj2/ � .1� jz2j2/ � @

2Pz

@z2@z2
:

Plugging the values from (3.4.1.1) into this last equation gives

LzP.z; �/ D 4

3
.1 	 jzj2/ � .1 	 jz1j2/ � 	2

j1 	 z1j6 �
�
	jz1j2 	 jz1j2jz2j2

C3jz2j2 	 z1jz2j2 	 2jz2j4 	 1C z1 C z1 	 z1jz2j2
�

C4

3
.1 	 jzj2/ � .	z1z2/

� 	2.1 	 z1/

j1 	 z1j6 �
�
2z2 	 z2z1 	 2z2jz2j2 	 z2jz1j2

�

C4

3
.1 	 jzj2/ � .	z2z1/
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� 	2.1 	 z1/

j1 	 z1j6 �
�
2z2 	 z2z1 	 2z2jz2j2 	 z2jz1j2

�

C4

3
.1 	 jzj2/ � .1 	 jz2j2/ � j1 	 z1j2 � 	2C 2jz1j2 C 4jz2j2

j1 	 z1j6 :

Multiplying out the terms, we find that

LzP.z; �/ D �2
j1� z1j6 �

�
�jz1j2 � 4jz1j2jz2j2 C 3jz2j2 � z1jz2j2 � 2jz2j4 � 1

C z1 C z1 � z1jz2j2 C jz1j4 C jz1j4jz2j2 C z1jz1j2jz2j2

C 2jz1j2jz2j4 C jz1j2 � z1jz1j2 � z1jz1j2 C z1jz1j2jz2j2
�

� 2

j1� z1j6 �
�
�2z1jz2j2 C 3jz1j2jz2j2 C 2jz2j4z1 C z1jz2j2jz1j2

� z1jz1j2jz2j2 � 2jz1j2jz2j4 � jz2j2jz1j4
�

� 2

j1� z1j6 �
�
�2z1jz2j2 C 3jz1j2jz2j2 C 2jz2j4z1 C z1jz2j2jz1j2

� z1jz1j2jz2j2 � 2jz1j2jz2j4 � jz2j2jz1j4
�

� 2

j1� z1j6 �
�
1� jz1j2 � 3jz2j2 C jz1j2jz2j2 C 2jz2j4 � z1 C z1jz1j2

C 3z1jz2j2 � z1jz1j2jz2j2 � 2z1jz2j4 � z1 C z1jz1j2 C 3z1jz2j2 � z1jz1j2jz2j2

� 2z1jz2j4 C jz1j2 � jz1j4 � 3jz1j2jz2j2 C jz1j4jz2j2 C 2jz1j2jz2j4
�
:

And now, if we combine all the terms in brackets, a small miracle happens:
Everything cancels. The result is

ŁzP.z; �/ � 0 :

Thus in some respects, it is inappropriate to study holomorphic functions on the
ball in C

n using the Poisson kernel. The classical Poisson integral does not create
pluriharmonic functions, and it does not create functions that are annihilated by the
invariant Laplacian. In view of Proposition 3.4.1, the Poisson–Szegő kernel is much
more apposite. As an instance, Adam Koranyi [KOR1, KOR2] made decisive use
of this observation in his study (proving boundary limits of H2 functions through
admissible approach regions A˛) of the boundary behavior of H2.B/ functions.
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It is known that the property described in Proposition 3.4.1 is special to the
ball—it is simply untrue on any other domain (see [GRA1, GRA2] for more detail
on this matter). Now one of the points that we want to make in this section is that the
result of the proposition can be extended—in an approximate sense—to a broader
class of domains.

Proposition 3.4.2. Let ˝ � C
n be a smoothly bounded, strictly pseudoconvex

domain and P its Poisson–Szegő kernel. Then, if f 2 C.@˝/, we may write

Pf .z/ D P1f .z/C Ef .z/ ;

where

(i) The term P1f is “approximately annihilated” by the invariant Laplacian on˝.
(ii) The operator E is smoothing in the sense of pseudodifferential operators.

We shall explain the meaning of (i) and (ii) in the course of the proofs of these
statements.

Proof of Proposition 3.4.2: We utilize of course the asymptotic expansion for
the Szegő kernel on a smoothly bounded, strictly pseudoconvex domain (see
[FEF1, Part I], [BOS]). It says that, for z; � near a boundary point P , we have
(in suitable biholomorphic local coordinates)

S˝.z; �/ D cn

.1 	 z � �/n C h.z; �/ � log j1 	 z � �j C E.z; �/ : (3.4.2.1)

Here h is a smooth function on ˝ �˝.
Now we calculate P.z; �/ in the usual fashion:

P˝.z; �/ D jS.z; �/j2
S.z; z/

D

ˇ̌
ˇ̌ cn

.1 	 z � �/n C h.z; �/ � log j1 	 z � �j
ˇ̌
ˇ̌2

cn

.1 	 jzj2/n C h.z; z/ � log.1 	 jzj2/
C F.z; �/ :

(3.4.2.2)
One can use just elementary algebra to simplify this last expression and obtain that,
in suitable local coordinates near the boundary,

P˝.z; �/ D cn � .1 	 jzj2/n
j1 	 z � �j2n

C 2.1 	 jzj2/n
j1 	 z � �jn log j1 	 z � �j C O

�
.1 	 jzj2/n � log j1 	 z � �j

�

� cn � .1 	 jzj2/n
j1 	 z � �j2n C G.z; �/ : (3.4.2.3)
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Now the first expression on the right-hand side of (3.4.2.3) is (in the local
coordinates in which we are working) the usual Poisson–Szegő kernel for the unit
ball in C

n. The second is an error term which we now analyze.

In fact we claim that the error term is integrable in �, uniformly in z, and the same
can be said for the gradient (in the z variable) of the error term. The first of these
statements is obvious, as both parts of the error term are clearly majorized by the
Poisson–Szegő kernel itself. As for the second part, we note that the gradient of the
error gives rise to three types of terms:

rE 
 .1 	 jzj2/n�1

j1 	 z � �jn � log j1 	 z � �j

C .1 	 jzj2/n
j1 	 z � �jnC1 � log j1 	 z � �j

C .1 	 jzj2/n
j1 	 z � �jnC1

� I C II C III : (3.4.2.4)

Now it is clear by inspection that I and II are majorized by the ordinary Poisson–
Szegő kernel, so they are both integrable in � as claimed. As for III , we must
calculate:
Z
�2@˝

.1 	 jzj2/n�1

j1 	 z � �jnC1 d�.�/ �
1X

jD�1

Z
2j .1�jzj2/�j1�z��j�2jC1.1�jzj2/

.1 	 jzj2/n�1

Œ2j .1 	 jzj2/
nC1 d�.�/

�
1X

jD�1

1

.1 	 jzj2/2
Z

j1�z��j�2jC1.1�jzj2/
2�j.nC1/ d�.�/

�
1X

jD�1
C � 2�j.nC1/

.1 	 jzj2/2 � �p2jC1.1 	 jzj2/2n�2

��2jC1 � .1 	 jzj2/

�
1X

jD�1

1

.1 	 jzj2/2 � .1 	 jzj2/n�1 � .1 	 jzj2/

�2�j.nC1/ � 2.jC1/.n�1/ � 2jC1

� C � 2n.1 	 jzj2/n�2 �
1X

jD�1
2�j

< 1 :
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Thus we see that the Poisson–Szegő kernel for our strictly pseudoconvex domain
˝ can be expressed, in suitable local coordinates, as the Poisson–Szegő kernel for
the ball plus an error term whose gradient induces a bounded operator on Lp . This
means that the error term itself maps Lp to a Sobolev space. In other words, it is a
smoothing operator (hence negligible from our point of view).

In fact there are several fairly well-known results about the interaction of the
Poisson–Bergman kernel and the invariant Laplacian. We summarize some of the
basic ones here.

Proposition 3.4.3. Let f be a C2 function on the unit ball that is annihilated by the
invariant Laplacian L. Then, for any 0 < r < 1 and S the unit sphere,

Z
S

f .r�/ d�.�/ D c.r/ � f .0/ :

Here d� is a rotationally invariant measure on the sphere S .

Proof: Replacing f with the average of f over the orthogonal group, this just
becomes a calculation to determine the exact value of the constant c.r/—see
[RUD2, p. 51].

Proposition 3.4.4. Suppose that f is a C2 function on the unit ball B that is
annihilated by the invariant Laplacian L. Then f satisfies the identity Bf D f .
In other words, for any z 2 B ,

f .z/ D
Z
B

B.z; �/f .�/ dV.�/ :

Proof: We have checked the result when z D 0 in the last proposition. For a general
z, compose with a Möbius transformation and use the biholomorphic invariance of
the kernel and the differential operator L.

Remark 3.4.5. It is a curious fact (see [AFR]) that the converse of this last
proposition is only true (as stated) in complex dimensions 1; 2; : : : ; 11. It is false
in dimensions 12 and higher.

Finally we need to address the question of whether the invariant Laplacian
for the domain ˝ annihilates the principal term of the right-hand side of the
formula (3.4.2.3). The point is this. The biholomorphic change of variable that
makes (3.4.2.3) valid is local. It is valid on a small, smoothly bounded subdomain
˝ 0 � ˝ which shares a piece of boundary with @˝. According to Fefferman [FEF1,
Part I] (see also the work in [GRK1,GRK2]), there is a smaller subdomain˝ 00 � ˝ 0
(which also shares a piece of boundary with @˝ and @˝ 0) so that the Bergman
metric of ˝ 0 is close—in the C2 topology—to the Bergman metric of ˝ on the
smaller domain ˝ 00. It follows then that the Laplace–Beltrami operator Ł˝0 for the
Bergman metric of ˝ 0 will be close to the Laplace–Beltrami operator Ł˝ of ˝
on the smaller subdomain ˝ 00. Now, on ˝ 0, the operator Ł˝0 certainly annihilates
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the principal term of (3.4.2.3). It follows then that, on ˝ 00, the operator Ł˝ nearly
annihilates the principal term of (3.4.2.3). We shall not calculate the exact sense in
which this last statement is true, but leave details for the interested reader.

This discussion completes our consideration of (3.4.2.3).
It is natural to wonder whether the Poisson–Bergman kernel B has any favorable

properties with respect to important partial differential operators. We have the
following positive result:

Proposition 3.4.6. Let ˝ D B , the unit ball in C
n, and B D BB.z; �/ its Poisson–

Bergman kernel. Then B is plurisubharmonic in the � variable.

Proof: Fix a point � 2 B and let ˚ be an automorphism of B such that ˚.�/ D 0.
From Proposition 3.2.4, we then have

BB.z; �/ D BB.˚.z/; ˚.�// � jdet JC˚.�/j2 D BB.˚.z/; 0/ � jdet JC˚.�/j2 :
(3.4.6.1)

We see that the right-hand side is an expression that is independent of � multiplied
times a plurisubharmonic function. A formula similar to (3.4.6.1) appears in [HUA].

The same argument shows that B.�; �/ is plurisubharmonic.

3.5 The Dirichlet Problem for the Invariant Laplacian
on the Ball

We will study the following Dirichlet problem on B � C
2 W

� 4Bu D 0 on B
u
ˇ̌
@B

D �;
(3.5.1)

where � is a given continuous function on @B: Here 4B is the invariant Laplacian
(i.e., the Laplace–Beltrami operator for the Bergman metric) on the unit ball in C

n.

Exercise: Is this a well-posed boundary value problem (in the sense of Lopatinski)?
Consult [KRA4] for more on this topic.

The remarkable fact about this relatively innocent-looking boundary value
problem is that there exist data functions � 2 C1.@B/ with the property that
the (unique) solution to the boundary value problem is not even C2 on B: This
result appears in [GRA1,GRA2] and was also discovered independently by Garnett–
Krantz (see [KRA4]). It is in striking contrast to the situation that obtains for the
Dirichlet problem for a uniformly elliptic operator.
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Observe that, for n D 1, our Dirichlet problem becomes

�
.1 	 jzj2/2 4 u D 0 on D � C

u
ˇ̌
@D

D �;

which is just the same as

� 4u D 0 on D � C

u
ˇ̌
@D

D �:

This is the standard Dirichlet problem for the Laplacian—a uniformly strongly
elliptic operator. Thus there is a complete existence and regularity theory: the
solution u will be as smooth on the closure as is the data � (provided that we
measure this smoothness in the correct norms). Our problem in dimensions n > 1

yields some surprises. We begin by developing some elementary geometric ideas.
Let �; � 2 @B: Define

�.�; �/ D j1 	 � � �j1=2;

where � � � � �1�1 C �2�2: Then we have

Proposition 3.5.2. The binary operator � is a metric on @B:

Proof: Let z;w; � 2 @B: We shall show that

�.z; �/ � �.z;w/C �.w; �/:

Assume for simplicity that the dimension n D 2: After applying a unitary rotation,
we may suppose that w D 1 D .1; 0/: Now j1 	 z � �j D 1

2
jz 	 �j2: Therefore it

suffices for us to prove that

1p
2

jz 	 �j �
p

j1 	 z1j C
p

j1 	 �1j:

But

1p
2

jz 	 �j � 1p
2

jz 	 1j C 1p
2

j1 	 �j:

(Notice that for z; � symmetrically situated about 1 and very near to 1, this is nearly
an equality.) Thus it is enough to prove that

jz 	 1j � p
2
p

j1 	 z1j:

Finally, we calculate that
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jz 	 1j D
p

j1 	 z1j2 C jz2j2

D
p

j1 	 z1j2 C 1 	 jz1j2

D
p
2 	 2Re z1

D p
2
p
1 	 Re z1

� p
2j1 	 z1j :

Now we define balls using � W For P 2 @B and r > 0 we define ˇ.P; r/ D f� 2
@B W �.P; �/ < rg: [These skew balls play a decisive role in the complex geometry
of several variables. We shall get just a glimpse of their use here.] Let 0 6D z 2 B

be fixed and let P be its orthogonal projection on the boundary:ez D z=jzj: If we fix
r > 0, then we may verify directly that

P.z; �/ ! 0 uniformly in � 2 @B n ˇ.ez; r/ as z !ez:
Proposition 3.5.2. Let B � C

n be the unit ball and g 2 C.@B/: Then the function

G.z/ D
� R

@B
P.z; �/g.�/ d�.�/ if z 2 B

g.z/ if z 2 B

solves the Dirichlet problem (3.5.1) for the Laplace–Beltrami operator 4B: Here
P is the Poisson–Szegő kernel.

Proof: It is straightforward to calculate that

4BG.z/ D
Z
@B

Œ4BP.z; �/
g.�/ d�.�/

D 0

because 4BP.�; �/ D 0:

For simplicity let us now restrict attention once again to dimension n D 2: We
wish to show that G is continuous on B: First recall that

P.z; �/ D 1

�.@B/

.1 	 jzj2/2
j1 	 z � �j4 :

Notice that
Z
@B

jP.z; �/j d�.�/ D
Z
@B

P.z; �/ d�.�/ D
Z
@B

P.z; �/ � 1 d�.�/ D 1
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since the identically 1 function is holomorphic on˝ and is therefore reproduced by
integration against P : We have used also the fact that P � 0:

Now we enter the proof proper of the proposition. Fix � > 0: By the uniform
continuity of g, we may select a ı > 0 such that if P 2 @B and � 2 ˇ.P; ı/, then
jg.P / 	 g.�/j < �: Then, for any 0 ¤ z 2 B and P its projection to the boundary,
we have

jG.z/ 	 g.P /j D
ˇ̌
ˇ̌Z
@B

P.z; �/g.�/ d�.�/ 	 g.P /
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z
@B

P.z; �/g.�/ d�.�/ 	
Z
@B

P.z; �/g.P / d�.�/

ˇ̌
ˇ̌

�
Z
@B

P.z; �/jg.�/ 	 g.P /j d�

D
Z
ˇ.P;ı/

P.z; �/jg.�/ 	 g.P /j d�.�/

Z
@Bnˇ.P;ı/

P.z; �/jg.�/ 	 g.P /j d�.�/

� � C 2kgkL1

Z
@Bnˇ.P;ı/

P.z; �/ d�.�/:

By the remarks preceding this argument, we may choose r sufficiently close to 1
such that P.z; �/ < � for jzj > r and � 2 @B nˇ.P; ı/: Thus with these choices, the
last line does not exceed C � �:

We conclude the proof with an application of the triangle inequality: Fix P 2 @B
and suppose that 0 ¤ z 2 B satisfies both jP 	 zj < ı and jzj > r: Ifez D z=jzj is
the projection of z to @B , then we have

jG.z/ 	 g.P /j � jG.z/ 	 g.ez/j C jg.ez/ 	 g.P /j:

The first term is majorized by � by the argument that we just presented. The second
is less than � by the uniform continuity of g on @˝:

That concludes the proof.

Now we know how to solve the Dirichlet problem for 4B , and we want next to
consider regularity for this operator. The striking fact, in contrast with the uniformly
elliptic case, is that for g even in C1.@B/, we may not conclude that the solution
G of the Dirichlet problem is C1 on B: In fact, in dimension n; the function G is
not generally in Cn.B/: Consider the following example:

Example: Let n D 2: Define

g.z1; z2/ D jz1j2:
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Of course g 2 C1.@B/: We now calculate Pg.z/ rather explicitly. We have

Pg.z/ D 1

�.@B/

Z
@B

.1 	 jzj2/2
j1 	 z � �j4 j�1j2 d�.�/:

Let us restrict our attention to points z in the ball of the form z D .rC i0; 0/:We set

Pg.r C i0/ � �.r/:

We shall show that � fails to be C2 on the interval Œ0; 1
 at the point 1. We have

�.r/ D 1

�.@B/

Z
@B

.1 	 r2/2
j1 	 r�1j4 j�1j2 d�.�/

D .1 	 r2/2
�.@B/

Z
j�1j<1

Z
j�2jD

p
1�j�1j2

j�1j2
j1 	 r�1j4 � 1p

1 	 j�1j2
ds.�2/ dA.�1/

D .1 	 r2/2
�.@B/

Z
j�1j<1

j�1j2
j1 	 r�1j4

2�
p
1 	 j�1j2p
1 	 j�1j2

dA.�1/

D 2�

�.@B/
.1 	 r2/2

Z
j�1j<1

j�1j2
j1 	 r�1j4 dA.�1/:

Now we set �1 D �ei ; 0 � � < 1; 0 �  � 2�: The integral is then

2�

�.@B/
.1 	 r2/2

Z 2�

0

Z 1

0

�2

j1 	 r�ei j4 � d� d :

We perform the change of variables r� D s and set C D 2�=�.@B/: The integral
becomes

C
.1 	 r2/2
r4

Z 2�

0

Z r

0

s3

j1 	 sei j4 dsd 

C
.1 	 r2/2
r4

Z r

0

s3
Z 2�

0

1

j1 	 sei j4 d ds:

Now let us examine the inner integral. It equals

Z 2�

0

1

.1 	 sei /2.1 	 se�i /2
d 

D
Z 2�

0

e2i 

.1 	 sei /2.ei 	 s/2 d 

D
Z 2�

0

ei 

.1�sei /2
.ei 	 s/2 ei d 

D 2� � 1

2�i

I
j�jD1

�

.1�s�/2
.� 	 s/2 d�:
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Applying the theory of residues to this Cauchy integral, we find that the last
line equals

2�
d

d�

�
�

.1 	 s�/2
�ˇ̌
ˇ̌
�Ds

D 2�
1C s2

.1 	 s2/3 :

Thus

�.r/ D 2�C
.1 	 r2/2
r4

Z r

0

s3.1C s2/

.1 	 s2/3 ds

.s 7!p
s/D �C

.1 	 r2/2
r4

Z r2

0

s.1C s/

.1 	 s/3 ds

D �C
.1 	 r2/2
r4

Z r2

0

2

.1 	 s/3 	 3

.1 	 s/2 C 1

.1 	 s/ ds

D �C
.1 	 r2/2

r4

(�
1

.1 	 s/2 	 3

.1 	 s/ 	 log.1 	 s/
�r2
0

)

D �C
.1 	 r2/2
r4

�
1

.1 	 r2/2 	 3

1 	 r2 	 log.1 	 r2/C 2

�

D �C

r4

�
1 	 3.1 	 r2/ 	 .1 	 r2/2 log.1 	 r2/C 2.1 	 r2/2

�

D �C

�
1 	 3.1 	 r2/C 2.1 	 r2/2

r4
	 .1 	 r2/2 log.1 	 r2/

r4

�
:

Thus we see that �.r/ is the sum of two terms. The first of these is manifestly
smooth at the point 1. However, the second is not C2 (from the left) at 1. Therefore
the function � is not C2 at 1 and we conclude that Pg is not smooth at the point
.1; 0/ 2 @B; even though g itself is.

The phenomenon described in this example was discovered by Garnett and Krantz
in 1977 (unpublished) and independently by Graham [GRA1, GRA2]. Graham
subsequently developed a regularity theory for 4B using weighted function spaces.
He also used Fourier analysis to explain the failure of boundary regularity in the
usual function space topologies.

It turns out that these matters were anticipated by Folland in 1975 (see [FOL]).
Using spherical harmonics, one can see clearly that the Poisson–Szegő integral of
a function g 2 C1.@B/ will be smooth on B if and only if g is the boundary
function of a pluriharmonic function (these arise naturally as the real parts of
holomorphic functions—see [KRA1]). We shall explicate these matters in Chap. 4
with a discussion of spherical harmonics.
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3.6 Concluding Remarks

The idea of reproducing kernels in harmonic analysis is an old one. The Poisson and
Cauchy kernels date back to the mid-nineteenth century.

Cauchy integral formula is special in that its kernel, which is

1

2�i
� 1

� 	 z
;

is the same on any domain. A similar statement is not true for the Poisson kernel,
although see [KRA7] for a study of the asymptotics of this kernel.

The complex reproducing kernels that are indigenous to several complex vari-
ables are much more subtle. It was only in 1974 that C. Fefferman was able to
calculate the Bergman kernel asymptotics on strictly pseudoconvex domains. Prior
to that, the very specific calculations of Hua [HUA] on concrete domains with a
great deal of symmetry were the standard in the subject. A variant of the Fefferman’s
construction also applies to the Szegő kernel (see also [BOS]). Carrying out an
analogous program on a more general class of domains has proved to be challenging.

This portion of the book is an invitation to study yet another kernel—the Poisson–
Bergman kernel. Inspired by the ideas of [HUA], this is a positive reproducing
kernel for the Bergman space. There are many questions about the role of this new
kernel that remain unanswered.

Exercises

1. Use results from the text to give an approximate formula for the Berezin kernel
of the annulus.

2. Up to an error term, calculate the Bergman representative coordinates on the
annulus.

3. Write down a biholomorphic mapping from the unit ball B in C
n to the domain

U D fz 2 C
n W Im z1 > jz2j2 C � � � C jznj2g :

[Hint: Imitate the Cayley transform from classical function theory.] Use the
biholomorphic invariance of the Bergman kernel to determine the Bergman
kernel for U .

4. Calculate the Berezin kernel for the domain U in Exercise 3.
5. What can you say about the Berezin kernel for the domain

U D f� 2 C W 0 < Im � < 1g ‹
What is the asymptotic behavior of the kernel as the argument(s) tend to
infinity?
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6. Use the Fefferman asymptotic expansion for the Bergman kernel of a strictly
pseudoconvex domain to give a new asymptotic expansion for the Berezin
kernel of a strictly pseudoconvex domain. What sort of logarithmic term do
you get?

7. It is certainly the case that the Bergman kernel of the unit disc is a derivative of
the Szegő kernel for the disc. Something of this nature is also true on the ball.
Explain.

8. Use the philosophy of Exercise 7 together with the Fefferman asymptotic
expansion to guess what the asymptotic expansion of the Szegő kernel on a
strictly pseudoconvex domain should look like. Refer to the paper [BOS] to
verify your answer.

9. Let ˝ � C be a bounded domain with C2 boundary. Let S � @˝ be an arc of
the boundary. Then certainly there is a conformal map ' of the disc into ˝ so
that an arc of the boundary of the imageU coincides with S . Thus the Bergman
kernel of the disc can be transferred to U . And the Bergman kernel of U can be
compared to the Bergman kernel of ˝ (this is all a poor man’s version of the
Fefferman’s procedure for strictly pseudoconvex domains). Fill in the details
of this argument to obtain an asymptotic expansion for the Bergman kernel of
˝.

10. Let˝ � C be a bounded domain with boundary pointP at which the boundary
has a corner with angle � . What can you say about the asymptotic behavior of
the Bergman kernel at P ? How does your answer vary with �? What happens
as � ! �?



Chapter 4
Partial Differential Equations

4.1 The Idea of Spherical Harmonics

Spherical harmonics are for many purposes the natural generalization of the
Fourier analysis of the circle to higher dimensions. Spherical harmonics are also
intimately connected to the representation theory of the orthogonal group. As a
result, analogues of the spherical harmonics play an important role in general
representation theory.

Our presentation of spherical harmonics owes a debt to [STW]. In fact Chap. 4,
Sect. 4.2 of [STW] contains all the most basic ideas about spherical harmonics, and
we refer the reader to [STW] both for the standard notation and for details.

In the next section we begin our serious investigation of the more advanced
properties of spherical harmonics.

4.2 Advanced Topics in the Theory of Spherical Harmonics:
The Zonal Harmonics

Since the caseN � 2 is very familiar and has been treated in some detail elsewhere,
let us assume from now on that N > 2:

Fix a point x0 2 †N�1 and consider the linear functional on Hk given by

ex0 W Y 7! Y.x0/:

Of course Hk is a Hilbert space so there exists a unique spherical harmonic Z.k/

x0

such that

Y.x0/ D ex0.Y / D
Z
†N�1

Y.t 0/Z.k/

x0 .t
0/ dt 0

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 4,
© Springer Science+Business Media New York 2013
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for all Y 2 Hk: [The reader will note here some formal parallels between the zonal
harmonic theory and the Bergman kernel theory covered earlier. In fact this parallel
goes deeper. See, for instance, [ARO] for more on these matters.]

Definition 4.2.1. The function Z.k/

x0 is called the zonal harmonic of degree k with
pole at x0:

Lemma 4.2.2. If
˚
Y1; : : : ; Yak

�
is an orthonormal basis for Hk , then

(a)
Pak

mD1 Ym.x0/Ym.t 0/ D Z
.k/

x0 .t
0/.

(b) Z.k/

x0 is real valued and Z.k/

x0 .t
0/ D Z

.k/

t 0
.x0/.

(c) If � is a rotation, then Z.k/

�x0.�t
0/ D Z

.k/

x0 .t
0/.

Proof. Let Z.k/

x0 D Pak
mD1hZ.k/

x0 ; YmiYm be the standard representation of Z.k/

x0 with
respect to the orthonormal basis fY1; : : : ; Yak g. Then

hZ.k/

x0 ; Ymi D
Z
†N�1

Ym.t 0/Z.k/

x0 .t
0/ dt 0 D Y m.x

0/I

we have used here the reproducing property of the zonal harmonic (note that since
Ym is harmonic then so is Ym). This proves (a), for we know that

Z
.k/

x0 .t
0/ D

akX
mD1

hZ.k/

x0 ; YmiYm.t 0/ D Ym.x0/Ym.t 0/:

To prove (b), let f 2 Hk: Then

f .x0/ D
Z
†N�1

f .t 0/Z.k/

x0 .t
0/ dt 0

D
Z
†N�1

f .t 0/Z.k/

k0 .t 0/ dt 0:

That is,

f .x0/ D
Z
†N�1

f .t 0/Z.k/

x0 .t
0/ dt 0:

Thus we see that Z.k/

x0 reproduces Hk at the point x0: By the uniqueness of the zonal

harmonic at x0; we conclude that Z.k/

x0 D Z
.k/

x0 : Hence, Z.k/

x0 is real valued. Now,
using (a), we have
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Z
.k/

x0 .t
0/ D

akX
mD1

Ym.x0/Ym.t 0/

D
akX
mD1

Ym.x0/Ym.t 0/

D Z
.k/

t 0
.x0/

D Z
.k/

t 0
.x0/:

This establishes (b).
To check that (c) holds, it suffices by uniqueness to see thatZ.k/

�x0.�t
0/ reproduces

Hk at x0: This is a formal exercise which we omit. ut
Lemma 4.2.3. Let fY1; : : : ; Yak g be any orthonormal basis for Hk: The following
properties hold for the zonal harmonics:

(a) Z.k/

x0 .x
0/ D ak

�.†N�1/
; where ak D dimAk D dimHk:

(b)
Pak

mD1 jYm.x0/j2 D ak
�.†N�1/

:

(c) jZ.k/

t 0
.x0/j � ak

�.†N�1/
:

Proof. Let x0
1; x

0
2 2 †N�1 and let � be a rotation such that �x0

1 D x0
2: Then, by parts

(a) and (c) of 4.2.2, we know that

akX
mD1

jYm.x0
1/j2 D Z

.k/

x0
1
.x0
1/ D Z

.k/

x0
2
.x0
2/ D

akX
mD1

jYm.x0
2/j2 � c:

Thus

ak D
akX
mD1

Z
†N�1

jYm.x0/j2 d�.x0/

D
Z
†N�1

akX
mD1

jYm.x0/j2 dx0

D c�.†N�1/:

This proves parts (a) and (b).
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For part (c), notice that

kZ.k/

x0 k2
L2

D
Z
†N�1

jZ.k/

x0 .t
0/j2 dt 0

D
Z
†N�1

 X
m

Ym.x0/Ym.t 0/
! X

`

Y`.x0/Y`.t 0/
!

dt 0

D
X
m

jYm.x0/j2

D ak

�.†N�1/
:

Finally, we use the reproducing property of the zonal harmonics to see that

jZ.k/

t 0
.x0/j D

ˇ̌
ˇ̌Z
†N�1

Z
.k/

t 0
.w0/Z.k/

x0 .w0/ dw0
ˇ̌
ˇ̌

� kZ.k/

t 0
kL2 � kZ.k/

x0 kL2
D ak

�.†N�1/
:

Now we wish to present a version of the expansion of the Poisson kernel in terms
of spherical harmonics in higher dimensions. Recall that the Poisson kernel for the
ball in R

N is

P.x; t 0/ D 1

�.†N�1/
1 	 jxj2
jx 	 t 0jN

for 0 � jxj < 1 and jt 0j D 1: Now we have

Theorem 4.2.4. If x 2 B , then we write x D rx0 with jx0j D 1: It holds that

P.x; t 0/ D
1X
kD0

rkZ
.k/

x0 .t
0/ D

1X
kD0

rkZ
.k/

t 0
.x0/

is the Poisson kernel for the ball. That is, if f 2 C.@B/, then

Z
@B

P.x; t 0/f .t 0/ d�.t 0/ � u.x/

solves the Dirichlet problem on the ball with data f:



4.2 Zonal Harmonics 121

Proof. Observe that

ak D dk 	 dk�2 D
 
N C k 	 1

k

!
	
 
N C k 	 3
k 	 2

!

D .N C k 	 3/Š
.k 	 1/Š.N 	 2/Š

�
.N C k 	 1/.N C k 	 2/

k.N 	 1/ 	 k 	 1
N 	 1

�

D
 
N C k 	 3
k 	 1

!�
N C 2k 	 2

k

�

� C �
 
N C k 	 3
k 	 1

!

� C � kN�2:

Here C D C.N/ depends on the dimension, but not on k: With this estimate, and
the estimate on the size of the zonal harmonics from the preceding lemma, we see
that the series

1X
kD0

rkZ
.k/

t 0
.x0/

converges uniformly on compact subsets of B: Indeed, for jxj � s < 1; x D rx0;
we have that

1X
kD0

ˇ̌
rkZ

.k/

t 0
.x0/

ˇ̌ �
1X
kD0

sk
ak

�.†N�1/
�

1X
kD0

sk
C � kN�2

�.†N�1/
D C 0 �

1X
kD0

skkN�2 < 1:

Now let u.t 0/ D Pp
mD0 Ym.t 0/ be a finite linear combination of spherical

harmonics with all Ym 2 Hk: Then

pX
mD0

jxjkYm
�
x

jxj
�

� u.x/ D
Z
†N�1

u.t 0/P.x; t 0/ dt 0

is the solution to the classical Dirichlet problem with data Y: Here P.x; t 0/ is the
classical Poisson kernel. On the other hand,
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Z
†N�1

u.t 0/
1X
kD0

jxjkZ.k/

t 0
.x0/ dt 0

D
pX

mD0

Z
†N�1

Ym.t
0/

1X
kD0

jxjkZ.k/

t 0
.x0/ dt 0

D
pX

mD0

1X
kD0

jxjk
Z
†N�1

Ym.t
0/Z.k/

t 0
.x0/ dt 0

D
pX

mD0
jxjmYm.x0/

D u.x/:

Thus
Z
†N�1

�
P.x; t 0/ 	

X
k

jxjkZ0.k/
x .t 0/


u.t 0/ dt 0 D 0

for all finite linear cominations of spherical harmonics. Since the latter are dense in
L2.†N�1/, the desired assertion follows. ut
Our immediate goal now is to obtain an explicit formula for each zonal harmonic
Z
.k/

x0 : We begin this process with some generalities about polynomials.

Lemma 4.2.5. Let P be a polynomial in R
N such that

P.�x/ D P.x/

for all � 2 O.N/ and x 2 R
N : Then there exist constants c0; : : : ; cp such that

P.x/ D
pX

mD0
cm
	
x21 C � � � C x2N


m
:

Proof. We write P as a sum of homogeneous terms:

P.x/ D
qX
`D0

P`.x/;

where P` is hologeneous of degree `: Now for any � > 0 and � 2 O.N/, we have
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qX
`D0

�`P`.x/ D
qX
`D0

P`.�x/

D P.�x/

D P.��x/

D
qX
`D0

P`.��x/

D
qX
`D0

�`P`.�x/:

For fixed x; we think of the far left and far right of this last sequence of equalities
as identities of polynomials in �. It follows that P`.x/ D P`.�x/ for every `: The
result of these calculations is that we may concentrate our attentions on P`:

Consider the function jxj�`P`.x/: It is homogeneous of degree 0 and still
invariant under the action of O.N/: Then

jxj�`P`.x/ D c`;

for some constant c`: This forces ` to be even (since P` is a polynomial function);
the result follows. ut
Definition 4.2.6. Let e 2 †N�1: A parallel of †N�1 orthogonal to e is the inter-
section of †N�1 with a hyperplane (not necessarily through the origin) orthogonal
to the line determined by e and the origin.

Notice that a parallel of †N�1 orthogonal to e is a set of the form

˚
x0 2 † W x0 � e D c

�
;

	1 � c � 1: Observe that a function F on†N�1 is constant on parallels orthogonal
to e 2 †N�1 if and only if for all � 2 O.N/ that fix e it holds that F.�x0/ D F.x0/:

Lemma 4.2.7. Let e 2 †N�1: An element Y 2 Hk is constant on parallels of †
orthogonal to e if and only if there exists a constant c such that

Y D cZ.k/
e :

Proof. Recall that we are assuming that N � 3: Let � be a rotation which fixes e:
Then, for each x0 2 †; we have

Z.k/
e .x0/ D Z.k/

�e .�x
0/ D Z.k/

e .�x0/:

Hence Z.k/
e is constant on the parallels of † orthogonal to e:
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To prove the converse direction, assume that Y 2 Hk is constant on the parallels
of † orthogonal to e: Let e1 D .1; 0; : : : ; 0/ 2 † and let � be a rotation such that
e D �e1: Define

W.x0/ D Y.�x0/:

Then W 2 Hk is constant on the parallels of † orthogonal to e1: Suppose we can
show that W D cZ

.k/
e1 .x

0/ for some constant c: Then

Y.x0/ D W.��1x0/ D cZ.k/
e1
.��1x0/

D cZ.k/
�e1
.x0/ D cZ.k/

e .x0/:

So the lemma will follow. Thus we examine W and take e D e1:

Define

P.x/ D
� jxjkW.x=jxj/ if x ¤ 0

0 if x D 0:

Let � be a rotation that fixes e1: We write

P.x/ D
kX

jD0
x
k�j
1 Pj .x2; : : : ; xN /:

Since � fixes the powers of x1, it follows that � leaves each Pj invariant. Then each
Pj is a polynomial in .x2; : : : ; xN / 2 R

N�1 that is invariant under the rotations of
R
N�1: We conclude that Pj D 0 for odd j and

Pj .x2; : : : ; xN / D cj
	
x22 C � � � C x2N


j=2 � cjR
j .x2; : : : ; xN /

for j even. Therefore

P.x/ D c0x
k
1 C c2x

k�2
1 R2 C � � � c2`x2`1 Rk�2`;

for some ` � k=2: Of course P is harmonic, so 4P � 0: A direct calculation then
shows that

0 D 4P D
X
p

�
c2p˛p C c2.pC1/ˇp


x
k�2.pC1/
1 R2p;

where

˛p � .k 	 2p/.k 	 2p 	 1/

and

ˇp � 2.p C 1/.N C 2p 	 1/:
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Therefore we find the following recursion relation for the c’s:

c2.pC1/ D 	˛pc2p
ˇp

:

In particular, c0 determines all the other c’s.
From this it follows that all the elements of Hk which are constant on parallels

of † orthogonal to e1 are constant multiples of each other. Since Z.k/
e1 is one such

element of Hk; this proves our result. ut
Lemma 4.2.8. Fix k: Let Fy0.x0/ be defined for all x0; y0 2 †: Assume that

(i) Fy0. � / is a spherical harmonic of degree k for every y0 2 †:
(ii) For every rotation � we have F�y0.�x0/ D Fy0.x0/; all x0; y0 2 †:
Then there is a constant c such that

Fy0.x0/ D cZ
.k/

y0 .x
0/:

Exercise: Show that a function that is invariant under a Lie group action must be
smooth (because the group is). Thus it follows immediately that the function F in
the lemma is a priori smooth.

Proof of the Lemma: Fix y0 2 † and let � 2 O.N/ be such that �.y0/ D y0: Then

Fy0.x0/ D F�y0.�x0/ D Fy0.�x0/:

Therefore by the preceding lemma,

Fy0.x0/ D cy0Z
.k/

y0 .x
0/:

(Here the constant cy0 may in principle depend on y0.) We need to see that for
y0
1; y

0
2 2 † arbitrary, it in fact holds that cy0

1
D cy0

2
: Let � 2 O.N/ be such that

�.y0
1/ D y0

2: By hypothesis (ii),

cy0
2
Z
.k/

y0
2
.�x0/ D Fy0

2
.�x0/

D F�y0
1
.�x0/

D Fy0
1
.x0/

D cy0
1
Z
.k/

y0
1
.x0/

D cy0
1
Z
.k/

�y0
1
.�x0/

D cy0
1
Z
.k/

y0
2
.�x0/:
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Since these equalities hold for all x0 2 †; we conclude that

cy0
2

D cy0
1
:

That is,

Fy0.x0/ D cZ
.k/

y0 .x
0/:

Definition 4.2.9. Let 0 � jzj < 1; jt j � 1; and fix � > 0: Consider the equation
z2 	 2tz C 1 D 0: Then z D t ˙ p

t 2 	 1 so that jzj D 1: Hence, z2 	 2tz C 1 is
zero-free in the disc fz W jzj < 1g and the function z 7! .1 	 2tz C z2/�� is well
defined and holomorphic in the disc. Set, for 0 � r < 1;

.1 	 2rt C r2/�� D
1X
kD0

P �
k .t/r

k:

Then P�
k .t/ is defined to be the Gegenbauer polynomial of degree k associated to

the parameter �:

Proposition 4.2.10. The Gegenbauer polynomials satisfy the following properties:

(1) P�
0 .t/ � 1:

(2) d
dt P

�
k .t/ D 2�P �C1

k�1 .t/ for k � 1:

(3) d
dt P

�
1 .t/ D 2�P �C1

0 .t/ D 2�:

(4) P�
k is actually a polynomial of degree k in t:

(5) The monomials 1; t; t 2; : : : can be obtained as finite linear combinations of
P�
0 ; P

�
1 ; P

�
2 ; : : : :

(6) The linear space spanned by the P�
k ’s is uniformly dense in C Œ	1; 1
:

(7) P�
k .	t / D .	1/kP �

k .t/ for all k � 0:

Proof. We obtain (1) by simply setting r D 0 in the defining equation for the
Gegenbauer polynomials.

For (2), note that

2r�

1X
kD0

P �C1
k .t/rk � 2r�

	
1 	 2rt C r2


�.�C1/

D d

dt

	
1 	 2rt C r2


��

D
1X
kD0

d

dt
P �
k .t/r

k:

The result now follows by identifying coefficients of like powers of r:
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For (3), observe that [using (1) and (2)]

d

dt
P �
1 .t/ D 2�P kC1

0 .t/ D 2�:

It follows from integration that P�
1 is a polynomial of degree 1 in t: Applying

(2) and iterating yields (4).
Now (5) follows from (4) (inductively) and (6) is immediate from (5) and the

Weierstrass approximation theorem.
Finally,

1X
kD0

P �
k .	t /rk � 	

1 	 2r.	t /C r2

��

D 	
1 	 2t.	r/C .	r/2
��

D
1X
kD0

P �
k .t/.	r/k

D
1X
kD0
.	1/kP �

k .t/r
k:

Now (7) follows from comparing coefficients of like powers of r: ut

Theorem 4.2.11. Let N > 2; � D .N 	 2/=2; k 2 f0; 1; 2; : : : g: Then there exists
a constant ck;N such that

Z
.k/

y0 .x
0/ D ck;NP

�
k .x

0 � y0/:

Exercise: Compute by hand what the analogous statement is for N D 2: (Recall
that the zonal harmonics in dimension 2 are just cos k�=

p
� and sin k�=

p
� for

k � 1:)

Proof. Let y0 2 † be fixed. For x 2 R
N define

Fy0.x/ D jxjkP �
k

�
x

jxj � y0
�
:

By part (7) of Proposition 4.2.10, if k is even, then

P�
k .t/ D

mX
jD0

d2j t
2j with 2m D kI
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also if k is odd, then

P�
k .t/ D

mX
jD0

d2jC1t2jC1 with 2mC 1 D k:

In both cases, Fy0.x/ is then a homogeneous polynomial of degree k: For instance,
if k is even, then

Fy0.x/ D jxjkP �
k

�
x � y0

jxj
�

D jxj2m
mX
jD0

d2j

�
x � y0

jxj
�2j

D
mX
jD0

d2j
	jxj2
m�j

.x � y0/2j :

We want to check that the hypotheses of Lemma 4.2.8 are satisfied when Fy0.x0/
is so defined. Once this is done then the conclusion of our Proposition follows
immediately. Thus we need to check that Fy0.x0/ is rotationally invariant and that
Fy0.�/ is harmonic.

If � 2 O.N/ and x0 2 †N�1 then

F�y0.�x0/ D jx0jkP �
k

�
�x0 � �y0

jxj
�

D jx0jkP �
k

�
x0 � y0

jxj
�

D Fy0.x0/:

This establishes the rotational invariance.
To check harmonicity, recall that the map x 7! jx 	 y0=sj2�N is harmonic on

R
N n fy0=sg when N � 3; s ¤ 0; and y0 2 †: Then, with � D .N 	 2/=2; we have

s2�N
ˇ̌
ˇ̌x 	 y0

s

ˇ̌
ˇ̌2�N D �

.sx 	 y0/ � .sx 	 y0/
.2�N/=2

D �jsxj2 	 2.sx/ � y0 C 1
.2�N/=2

D
�
1 	 2.sjxj/

�
x

jxj � y0
�

C .sjxj/2
���

� �
1 	 2rt C r2

��

D
1X
kD0

skjxjkP �
k

�
x

jxj � y0
�
: (4.2.11.1)
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Here we have taken r D sjxj and t D .x=jxj/ � y0: Thus the sum at the end of this
calculation is a harmonic function of x in Rs D fx 2 R

N W 0 < jxj < 1=sg for
y0 2 † fixed.

To see that each coefficient

jxjkP �
k

�
x

jxj � y0
�

in the series is a harmonic function of x 2 R
N , we proceed as follows. Fix 0 ¤ x0 2

R
N : Then for every s such that 0 < s < 1=jx0j formula (4.2.11.1) tells us that the

function

x 7!
1X
kD0

skjxjkP �
k

�
x

jxj � y0
�

is harmonic. Therefore this function satisfies the mean-value property. By uniform
convergence we can switch the order of summation and integration in the mean-
value property to obtain

1X
kD0

sk
1

�.B.x0; r//

Z
@B.x0;r/

jxjkP �
k

�
x

jxj � y0
�

d�.x/

D 1

�.B.x0; r//

Z
@B.x0;r/

1X
kD0

skjxjkP �
k

�
x

jxj � y0
�

d�.x/

D
1X
kD0

skjx0jkP �
k

�
x0

jx0j � y0
�

for 0 < r < jx0j: Since this equality holds for 0 < s < 1=jx0j; the identity principle
for power series tells us that

1

�.B.x0; r//

Z
@B.x0;r/

jxjkP �
k

�
x

jxj � y0
�

d�.x/ D jx0jkP �
k

�
x0

jx0j � y0
�

for every 0 < r < jx0j: It is a standard fact (see [KRA1, Chap. 1]) that any function
satisfying a mean-value property of this sort—for any x0 and all small r—must be
harmonic. We conclude that

Fy0.x/ D jxjkP �
k

�
x

jxj � y0
�

is harmonic. The theorem follows. ut
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4.3 Spherical Harmonics in the Complex
Domain and Applications

Now we give a rendition of “bigraded spherical harmonics” which is suitable for the
study of functions of several complex variables. Our purpose is to return finally to
the study of the regularity for the Laplace–Beltrami operator for the Bergman metric
on the ball. Because of the detailed exposition that has gone on before, and because
much of this new material is routine, we shall perform many calculations in C

2 only
and shall leave several others to the reader.

Definition 4.3.1. Let Hp;q be the space consisting of all restrictions to the unit
sphere in C

n of harmonic (in the classical sense) polynomials that are homogeneous
of degree p in z and homogeneous of degree q in z:

Observe that

Hk D [pCqDkHp;q:

Proposition 4.3.2. The spaces Hp;q enjoy the following properties:

(1) D.p; qIn/ � dim CHp;q D .p C q C n 	 1/.p C n 	 2/Š.q C n 	 2/Š
pŠqŠ.n 	 1/Š.n 	 2/Š :

(2) The space Hp;q is U.n/ irreducible. That is, Hp;q has no proper linear subspace
L such that, for each U 2 U.n/; U maps L into L:

(3) If f1; : : : ; fD is an orthonormal basis for Hp;q;D D D.p; qIn/; then

Hp;q
n .�; �/ �

DX
jD1

fj .�/fj .�/

reproduces Hp;q: That is, if � 2 Hp;q; � 2 †; then

�.�/ D
Z
†

Hp;q
n .�; �/�.�/ d�.�/:

(4) The orthogonal projection �p;q W L2.†/ ! Hp;q is given by

�p;q.f /.�/ D
Z
†

f .�/Hp;q
n .�; �/ d�.�/:

Proof. We leave the proofs of parts (1) and (2) as exercises.
To prove (3), notice that if � 2 Hp;q , then we may write � D PD

jD1 aj fj : Then
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Z
†

Hp;q
n .�; �/�.�/ d�.�/ D

Z
†

0
@ DX
jD1

fj .�/fj .�/

1
A
0
@ DX
jD1

akfk.�/

1
A d�.�/

D
DX

j;kD1
akfj .�/

Z
†

fj .�/fk.�/ d�.�/

D
DX
jD1

aj fj .�/

D �.�/:

For (4), select g 2 L2.†/: Then

�p;qg.�/ D
Z
†

g.�/

DX
jD1

fj .�/fj .�/ d�.�/

D
DX
jD1

�Z
†

g.�/fj .�/ d�.�/

�
fj .�/

so that �p;q maps L2 into Hp;q: By (3) it follow that �p;q ı �p;q D �p;q: Finally,
�p;q is plainly self-adjoint. Thus �p;q is the orthogonal projection onto Hp;q: ut
In order to present the solution of the Dirichlet problem for the Laplace–Beltrami
operator 4B; we need to define another special function. This one is defined by
means of an ordinary differential equation.

Definition 4.3.3. Let a; b 2 R and c > 0: The linear differential equation

x.1 	 x/y00 C �
c 	 .aC b C 1/x


y0 	 aby D 0 (4.3.3.1)

is called the hypergeometric equation.

If we divide the hypergeometric equation through by the leading factor x.1	x/,
we see that this is an ordinary differential equation with a regular singularity at 0: It
follows (see [COL]) that (4.3.3.1) has a solution of the form

x�
1X
jD0

aj x
j ; (4.3.3.2)

where a0 ¤ 0 and the series converges for jxj < 1: Let us now sketch what
transpires when the expression (4.3.3.2) is substituted into the differential equation
(4.3.3.1).

We find that

1X
jD0

aj x
�Cj�1.�C j /.�C j 	 1C c/	

1X
jD0

aj x
�Cj .�C j C a/.�C j C b/ D 0;
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which gives the following system of equations for determining the exponent � and
the coefficients aj W

a0�.� 	 1C c/ D 0

aj .�C j /.�C j 	 1C c/	 aj�1.�C j 	 1C a/.�C j 	 1C b/ D 0 ; j � 1:

The first of these equations yields that either � D 0 or � D 1 	 c:
First consider the case � D 0: We find that

aj D .j 	 1C a/.j 	 1C b/

j.j 	 1C c/
aj�1 ; j D 1; 2; : : : :

Setting a0 D 1 we obtain

aj D a.aC 1/ � � � .aC j 	 1/b.b C 1/ � � � .b C j 	 1/
j Šc.c C 1/ � � � .c C j 	 1/

D  .aC j / .b C j / .c/

j Š .a/ .b/ .c C j /
;

where  is the classical gamma function (see [CCP]). Thus for � D 0, a particular
solution to (4.3.3.1) is

y.x/ D F.a; b; cI x/ �
1X
jD0

 .aC j / .b C j / .c/

 .a/ .b/ .c C j /
� x

j

j Š
:

Now consider the case � D 1 	 c: Arguing in the same manner, if c ¤ 2; 3; 4; : : : ,
we find (setting a0 D 1 again) that a particular solution of the differential equation
is given by

y.x/ D F.1 	 c C a; 1 	 c C b; 2 	 cI x/

� x1�c
1X
jD0

 .1 	 c C aC j / .1 	 c C b C j / .2 	 c/
 .1 	 c C a/ .1 	 c C b/ .2 	 c C j /

� x
j

j Š
:

Remark 4.3.4. We leave as an exercise the following statement: By checking the
asymptotic behavior of F.1	 c C a; 1	 c C b; 2	 cI x/ at the origin, one may see
that this function is linearly independent from that found when � D 0: The functions
F are known as the hypergeometric functions. See [ERD] for more on these matters.

In the case that c D 2; 3; 4; : : : , then a modification of the above calculations
(again see [COL, p. 165]) gives rise to a solution with a logarithmic singularity at 0:

Define

Sp;qn .r/ D rpCq F.p; q; p C q C nI r2/
F.p; q; p C q C nI 1/ :
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We want to show that Sp;qn is C1 on the interval .	1; 1/ and continuous on Œ	1; 1
:
We will make use of the following classical summation tests for series. For more on
these tests, see [STR].

Lemma 4.3.5 (Dini–Kummer). For j D 1; 2; : : : let aj ; bj > 0 and put

Dj D bj 	 bjC1
ajC1
aj

:

If lim infj!1Dj > 0, then the series
P

j aj converges.

Remark 4.3.6. Notice that, if bj D 1 for all j , then this test reduces to the ratio test.

Proof. By hypothesis, we may find a ˇ > 0 and an integer j0 > 0 such that, if
j � j0, then Dj > ˇ: Thus

ˇ < bj 	 bjC1
ajC1
aj

so that

0 < aj <
aj bj 	 bjC1ajC1

ˇ
(4.3.5.1)

for j � j0:

Now

1X
jDj0

1

ˇ

	
aj bj 	 ajC1bjC1


 D lim
J!1

1

ˇ

JX
jDj0

.aj bj 	 ajC1bjC1/:

By our hypothesis, aj bj > ajC1bjC1 > 0 for all j � j0: Therefore we may set
	 D limj!1 aj bj : The number 	 is finite and nonnegative. Using (4.3.5.1) we
have

1X
jDj0

aj <
1

ˇ

1X
jDj0

.aj bj 	 ajC1bjC1/

D 1

ˇ

	
aj0bj0 	 	


< 1:

Corollary 4.3.7 (Raabe). If aj > 0 for j D 1; 2; : : : , we set Qj D j.1 	
ajC1=aj /: If it holds that

lim inf Qj > 1; (4.3.7.1)

then
P

j aj converges.
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Proof. Let b1 D 1 and bj D j 	 1 for j � 2: Then

Qj 	 1 D j

�
1 	 ajC1

aj

�
	 1

D .j 	 1/ 	 j ajC1
aj

D Dj ;

where we are using the notation of the lemma. Then lim infj!1Qj > 1 if and only
if lim infj!1Dj > 0: ut
Proposition 4.3.8. Take

F.a; b; cI x/ D
1X
jD0

 .aC j / .b C j / .c/

 .a/ .b/ .c C j /
� x

j

j Š

as usual. If jxj D 1 and c > aC b, then the series converges absolutely.

Proof. We want to apply Raabe’s test. Thus we need to calculate the terms Qj :

Denote the absolute value of the j th summand by ˛j : Then, since jxj D 1; we have

˛jC1
˛j

D .aC j /.b C j /

.j C 1/.c C j /
:

Set c D aC b C ı; where this equality defines ı > 0: Then

˛jC1
˛j

D ab C aj C bj C j 2

.j C 1/.aC b C ı C j /

D 1 	 ıj C aC b C ı C j 	 ab
.j C 1/.aC b C ı C j /

D 1 	 .1C ı/j

.j C 1/.aC b C ı C j /
CO.1=j 2/:

As a result,

Qj � j

�
1 	 ˛jC1

˛j

�

D j

�
.1C ı/j

.j C ı/.aC b C ı C j /
CO.1=j 2/

�

and lim infj!1Qj D 1C ı > 1: Thus Raabe’s test implies our result. ut
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It follows from the proposition that Sp;qn is continuous on Œ	1; 1
 and C1 on
.	1; 1/: We need to know when the function is in fact C1 up to the endpoints.
If either p D 0 or q D 0, then the order zero term of the hypergeometric equation
drops out. One may solve this hypergeometric equation for solutions of the form

1X
jD0

aj .x 	 1/jC� (4.3.9)

and find that in fact the solutions are real analytic near 1; in particular they are
smooth. On the other hand, if both p and q are not zero, then the hypergeometric
equation never has real analytic solutions near 1 as we may learn by substituting
(4.3.9) into the differential equation. In fact the solutions are never Cn; where n is
the dimension of the complex space that we are studying.

Remark 4.3.10. Gauss found that

lim
x!1�

F.a; b; cI x/ D  .c/ .c 	 a 	 b/
 .c 	 a/ .c 	 b/ :

Also one may substitute the function

y D
Z
Œ0;1


.u 	 x/��1�.u/ du;

where � is a constant to be selected, into the hypergeometric equation. Some
calculations, together with standard uniqueness theorems for ordinary differential
equations, lead to the formula

F.a; b; cI x/ D  .c/

 .b/ .a/

Z 1

0

tb�1.1 	 t /a�b�1.1 	 xt/�a dt

for 0 < x < 1: It is easy to see from this formula that F cannot be analytically
continued past 1:

As a consequence of our last proposition,

Sp;qn .r/ D rpCq F.p; q; p C q C nI r2/
F.p; q; p C q C nI 1/

is well defined and C1 when 0 � r < 1:

Theorem 4.3.11. Let f 2 Hp;q: Then the solution of the Dirichlet problem

� 4Bu D 0 on B
u D f on @B � †



136 4 Partial Differential Equations

is given by

u.r�/ D f .�/Sp;qn .r/

for � 2 † and 0 � r � 1:

Proof. To simplify the calculations, we shall prove the theorem only in dimension
n D 2:

Let F0.z/ D zp1 zq2 and f0 D F0
ˇ̌
@B
: Then the ordinary Laplacian

4 � 4

�
@2

@z1@z1
C @2

@z2@z2

�

annihilates F0: Recall that Hp;q is irreducible for U.2/: This means that
ff ı �g�2U.2/ spans all of Hp;q (for if it did not, it would generate a nontrivial
invariant subspace, and these do not exist by definition of irreducibility). Further-
more 4B commutes with U.2/, so if we prove the assertion for f0; F0, then the full
result follows.

For z 2 B we set r D jzj: Then r2 D z1z1 C z2z2: We seek a solution of our
Dirichlet problem of the form

u.z/ D g.r2/zp1 z2
q:

Recall that

4B D 4

nC 1

	
1 	 jzj2


nX
i;jD1

	
ıij 	 zi zj


 @2

@zi @zj
:

We calculate 4Bu:
Now

@

@zj
u D zj g

0.r2/
�
zp1 zq2

C g.r2/zp1
	
qzq�1
2



ı2j

and

@2

@zi zj
u D g00.r2/zi zj

�
zp1 zq2

C ıij g
0.r2/

�
zp1 zq2



Czj g
0.r2/

�
pzp�1

1 zq2ıi1


Czi g
0.r2/

�
zp1 qzq�1

2 ı2j


Cg.r2/�.pzp�1
1 ı1i /.qzq�1

2 ı2j /

:
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Therefore

2X
iD1

@2u

@zi @zi
D
(

2X
iD1

�
g00.r2/jzi j2 C g0.r2/


zp1 zq2

)
C g0.r2/pzp1 zq2 C g0.r2/qzp1 zq2

D zp1 zq2
�
g00.r2/r2 C .2C p C q/g0.r2/


:

By a similar calculation we find that

2X
i;jD1

zi zj
@2u

@zi zj
D zp1 zq2

�
r4g00.r2/C .p C q C 1/r2g0.r2/C pq g.r2/


:

Substituting these two calculations into the equation 4Bu D 0 (and remembering
that n D 2), we find that

0 D 4Bu D 4

2C 1
.1 	 r2/zp1 zq2

�
g00.r2/r2 C .2C p C q/g0.r2/



	 4

2C 1
.1 	 r2/zp1 zq2

�
g00.r2/r4 C .p C q C 1/r2g0.r2/C pq g.r2/



D 4

2C 1
.1 	 r2/zp1 zq2

�
r2.1 	 r2/g00.r2/

C�.p C q C 2/ 	 .p C q C 1/r2

g0.r2/ 	 pq g.r2/

�
:

Therefore if a solution of our Dirichlet problem of the form of u.z/ D g.r2/zp1 zq2
exists, then g must satisfy the following ordinary differential equation:

r2.1 	 r2/g00.r2/C �
.p C q C 2/ 	 .p C q C 1/r2


g0.r2/ 	 pq g.r2/ D 0:

We may bring the essential nature of this equation to the surface with the changes
of variables t D r2; a D p; b D q; and c D pC qC 2: Then the equation becomes

t .1 	 t /g00 C �
c 	 .aC b C 1/t


g0 	 ab g D 0:

This, of course, is a hypergeometric equation. Since u is the solution of an elliptic
problem, it must be C1 on the interior. Thus g must be C1 on Œ0; 1/: Given the
solutions that we have found of the hypergeometric equation, we conclude that

g.t/ D F.p; q; p C q C nI t /:

Consequently
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u.z/ D F.p; q; p C q C nI r2/
F.p; q; p C q C nI 1/ zp1 zq2

D Sp;qn .r/rpCqf .�/:

Theorem 4.3.12. Let 0 � r < 1 and �; � 2 @B: Then the Poisson–Szegő kernel for
the ball B � C

n is given by the formula

P.r�; �/ D
1X

p;qD0
Sp;qn .r/Hp;q

n .�; �/:

Proof. Recall that, if g 2 C.@B/, then

G.z/ D
� R

@B
P.z; �/g.�/ d�.�/ on B

g.z/ on @B

solves the Dirichlet problem for 4B with data g: Recall also that Hp;q
n .�; �/ is the

zonal harmonic for Hp;q:

Let us first prove that the series in the statement of the theorem converges.
An argument similar to the one we gave for real spherical harmonics shows that

jHp;q
n .�; �/j � C �D.p; qIn/:

Here D.p; qIn/ is the dimension of Hp;q: Clearly

D.p; qIn/ � dimHpCq
2n D

 
2nC .p C q/ 	 1

p C q

!
	
 
2nC .p C q/ 	 3

p C q 	 2

!

� C � .p C q C 1/2n:

Recall that

Sp;qn .r/ D rpCq F.p; q; p C q C nI r2/
F.p; q; p C q C nI 1/

and observe that F.p; q; p C q C nI r2/ is an increasing function of r: Thus

Sp;qn .r/ � rpCq � 1:

Putting together all of our estimates, we find that

Sp;qn .r/ �Hp;q
n .�; �/ � C � rpCq.p C q C 1/2n:

Summing on p and q for 0 � r < 1, we see that our series converges absolutely.
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It remains to show that the sum of the series is actually the Poisson–Szegő kernel.
What we will in fact show is that, for � 2 @B and 0 < r < 1, we have

Z
@B

P.r�; �/f .�/ d�.�/ D
Z
@B

X
p;q

Sp;qn .r/Hp;q
n .�; �/f .�/ d�.�/

for every f 2 C.@B/: But we already know that this identity holds for f 2 Hp;q:

Finite linear combinations of [p;qHp;q are dense in C.@B/: Hence the result
follows. ut
Now we return to the question that has motivated all of our work: Namely, we
want to understand the lack of boundary regularity for the Dirichlet problem for
the Laplace–Beltrami operator on the ball. As a preliminary, we must introduce a
new piece of terminology.

Definition 4.3.13. Let U � C
n be an open set and suppose that f is a continuous

function defined on U:We say that f is pluriharmonic on U if, for every a 2 U and
every b 2 C

n, it holds that the function

� 7! f .aC �b/

is harmonic on the open set (in C) of those � such that aC �b 2 U:
A function is pluriharmonic if and only if it is harmonic in the classical sense
on every complex line � 7! a C �b: Pluriharmonic functions arise naturally
because they are (locally) the real parts of holomorphic functions of several complex
variables (see [KRA1, Chap. 2] for a detailed treatment of these matters).

Remark that a C2 function v is pluriharmonic if and only if we have .@2=@zj @zk/v
� 0 for all j; k: In the notation of differential forms, this condition is conveniently
written as @@v � 0:

Now we have

Theorem 4.3.14. Let f 2 C1.@B/: Consider the Dirichlet problem
� 4Bu D 0 on B

u
ˇ̌
@B

D f on @B:

Suppose that the solution u of this problem (given in Theorem 4.3.11) lies in
C1.B/: Then u must be of the form

X
˛

c˛z˛ C
X
ˇ

dˇzˇ:

That is, u must be pluriharmonic. The converse statement holds as well: If f is the
boundary function of a pluriharmonic function u that is continuous on B and if f is
C1 on the boundary, then U 2 C1.B/:
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Proof. Now let v 2 C.B/ and suppose that v is pluriharmonic on B: Let v
ˇ̌
@B

� f:

Then the solution to the Dirichlet problem for 4B with data f is in fact the function
v (exercise). But then v is also the ordinary Poisson integral of f: Thus if f 2
C1.@B/, then v 2 C1.B/: This proves the converse (the least interesting) direction
of the theorem.

For the forward direction, let f 2 C1.@B/ and suppose that the solution u of
the Dirichlet problem for 4B with data f is C1 on B: We write

f D
X
p;q

Yp;q;

where each Yp;q 2 Hp;q: We proved above that

P.r�; �/ D
X
p;q

Sp;qn .r/Hp;q
n .�; �/

and also that the solution to the Dirichlet problem for 4B is given by

u.r�/ D
Z

P.r�; �/f .�/ d�.�/

D
X
p0;q0

X
p;q

Z
Sp

0;q0

n .r/Hp0;q0

n .�; �/Yp;q.�/ d�.�/

(orthogonality)D
X
p;q

Sp;qn .r/

Z
Hp;q
n .�; �/Yp;q.�/ d�.�/

D
X
p;q

Sp;qn .r/Yp;q.�/:

Therefore if Pf D u is smooth on B , then we may define for each p; q the function

Qp;q.r/ D
Z
@B

.Pf /.r�/Yp;q.�/ d�.�/

D Sp;qn .r/kYp;qk2:

Thus if Pf is C1 up to the boundary, then, by differentiation under the integral
sign, Q.r/ is C1 up to r D 1: But recall that

Sp;qn .r/ D rpCq F.p; q; p C q C nI r2/
F.p; q; p C q C nI 1/

is smooth at r D 1 if and only if either p D 0 or q D 0: So the only nonvanishing
terms in the expansion of f are elements of Hp;0 or H0;q: That is what we wanted
to prove. ut
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We leave it to the reader to prove the refined statement that if a solution u to the
Dirichlet problem is Cn up to the closure, then u must be pluriharmonic.

The analysis of the Poisson–Szegő kernel using bigraded spherical harmonics is
due to Folland [FOL]. We thank Folland for useful conversations and correspon-
dence regarding this material.

An analysis of boundary regularity for the Dirichlet problem of the Laplace–
Beltrami operator on strictly pseudoconvex domains began in [GRL]. Interestingly,
these authors uncovered a difference between the cases of dimension 2 and
dimensions 3 and higher.

4.4 An Application to the Bergman Projection

In recent years the Bergman projection P W L2.˝/ ! A2.˝/ has been an object of
intense study. The reason for this interest is primarily that Bell and Ligocka [BEL1,
BEL2] have demonstrated that the boundary behavior of biholomorphic mappings
of domains may be studied by means of the regularity theory of this projection
mapping. Of central importance in these considerations is the following (see also
our discussion in Sect. 2.1).

Definition 4.4.1 (Condition R). Let ˝ � C
n be a smoothly bounded domain.

We say that ˝ satisfies Condition R if P maps C1.˝/ to C1.˝/:

A representative theorem in the subject is the following.

Theorem 4.4.2 (Bell). Let ˝1;˝2 be smooth, pseudoconvex domains in C
n: Let

˚ W ˝1 ! ˝2 be a biholomorphic mapping. If at least one of the two domains
satisfies Condition R, then ˚ extends to a C1 diffeomorphism of ˝1 to ˝2:

There are roughly two known methods to establish Condition R for a domain. One
is to use symmetries, as in [BAR1, BEB]. The more powerful method is to exploit
the @- Neumann problem. That is the technique that we treat here. Let us begin with
some general discussion.

Let ˝ �� C
n be a fixed domain on which the equation @u D ˛ is always

solvable when ˛ is a @- closed .0; 1/ form (i.e., a domain of holomorphy—in other
words, a pseudoconvex domain). Let P W L2.˝/ ! A2.˝/ be the Bergman
projection. If u is any solution to @u D ˛, then w D w˛ D u 	 P u is the
unique solution that is orthogonal to holomorphic functions. Thus w is well defined,
independent of the choice of u: Define the mapping

T W ˛ 7! w˛:

Then, for f 2 L2.˝/ it holds that

Pf D f 	 T .@f /: (4.4.3)
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To see this, first notice that @Œf 	 T .@f /
 D @f 	 @f D 0; where all
derivatives are interpreted in the weak sense. Thus f 	 T .@f / is holomorphic.
Also f 	 Œf 	 T .@f /
 is orthogonal to holomorphic functions by design. This
establishes the identity (4.4.3). But we have a more useful way of expressing T W
namely, T D @

�
N: Thus we have derived the following important result:

P D I 	 @�
N@: (4.4.4)

This formula is usually attributed to J. J. Kohn.
Now suppose that our domain is strictly pseudoconvex. Then we know that N

maps W s to HsC1 for every s (see [FOK, KRA4]). Recall that @ and @
�

are first-
order differential operators. Then a trivial calculation with (4.4.4) shows that

P W W s ! Hs�1

for every s: By the Sobolev embedding theorem, a strictly pseudoconvex domain
therefore satisfies ConditionR: Thus thanks to the program of Bell and Ligocka (see
[BEL1, KRA1]), we know that biholomorphic mappings of strictly pseudoconvex
domains extend to be diffeomorphisms of their closures.

It is often convenient, and certainly aesthetically more pleasing, to be able to
prove that P W W s ! W s: This is known to be true on strictly pseudoconvex
domains. We now describe the proof, due to J. J. Kohn [KOH1], of this assertion.

Theorem 4.4.5. Let ˝ be a smoothly bounded, strictly pseudoconvex domain
in C

n: Then, for each s 2 R, there is a constant C D C.s/ such that

kPf kW s � C � kf kW s : (4.4.5.1)

Remark 4.4.6. In fact the specific property of a strictly pseudoconvex domain that
will be used is the following: For every � > 0 there is a C.�/ > 0 so that the
inequality

k�k2 � �Q.�; �/C C.�/k�k2�1 (4.4.5.2)

for all � 2 D � V0;1 \ dom @ \ dom @
�
: We leave it as an exercise for the reader

to check that property (4.4.5.2) is equivalent to the norm Q being compact in
the following sense: If f�j g is bounded in the Q norm, then it has a convergent
subsequence in the L2 norm.

The theorem that we are about to prove is in fact true on any smoothly bounded
domain with the property (4.4.5.2). Property (4.4.5.2) is known to hold for a large
class of domains, including domains of finite type (see [CAT1,CAT2,DAN1,DAN2,
DAN3]) and, in particular, domains with real analytic boundary [DIF2].
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Proof of the Theorem: We have already observed that the Bergman
projection of a strictly pseudoconvex domain maps functions inC1.˝/ to functions
in C1.˝/: Thus it suffices to prove our estimate (4.4.5.1) for f 2 C1.˝/:

Let r be a smooth defining function for ˝: Let � 2 @˝ and let U � C
n be a

neighborhood of �: We may select a smooth function w on U such that !n � w � @r
satisfies j!nj � 1 on U: We select !1; : : : ; !n�1 on U such that !1; : : : ; !n forms
an orthonormal basis of the .1; 0/ forms on U: Thus any � 2 D0;1 can be expressed,
on ˝ \ U; as a linear combination

� D
X
j

�j!
j :

Of course � 2 D0;1 if and only if �n D 0 on @˝:
Let �s

t be the tangential Bessel potential of order s (see [FOK]. If � is any
real-valued cutoff function supported in U , then, whenever � 2 D0;1, we have
��s

t .��/ 2 D0;1 as well. The identity Q.N˛; / D h˛; i; with ˛ D @f and
 D �3�2s�N@f; yields that

Q.N@f; �3�2s�N@f / D h@f; �3�2s�N@f i: (4.4.5.3)

Now we apply the compactness inequality (4.4.5.2) with � D ��s
t .�N@f / to obtain

k��s
t .�N@f /k2 � �Q.��s

t .�N@f /; ��
s
t .�N@f //C C.�/k��s

t .�N@f /k2�1
� �Q.N@f; �3�2s

t �N@f /C �CkN@f k2s C C 0.�/kN@f k2s�1:

Of course in the last estimate, we have done two things: First, we have moved � and
�s
t across the inner product Q at the expense of creating certain acceptable error

terms (which are controlled by the term �CkN@f k2s ). Second, we have used the
fact that k�s

t gk20 � kgk2s by definition. Now, using (4.4.5.3), we see that the last
line is majorized by

�hf; @�
�3�2s

t �N@f i C �CkN@f k2s C C 0.�/kN@f k2s�1: (4.4.5.4)

Now we may cover ˝ with boundary neighborhoods U as above plus an interior
patch on which our problem is strongly elliptic. We obtain an estimate like (4.4.5.4)
on each of these patches. We may sum the estimates, using (as we did in the solution
of the @- Neumann problem) the fact that @˝ is non-characteristic for Q; to obtain

kN@f k2s � �Ck@�
N@f k2s C C 0.�/.kf k2s C kN@f k2s�1/:

Applying this inequality, with s replaced by s 	 1; to the last term on the right of
(4.4.5.4), and then repeating, we may finally derive that

kN@f k2s � �Ck@�
N@f k2s C C 0.�/.kf k2s C kN@f k20/: (4.4.5.5)
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We know that @@
�
N@f D @f: As a result,

k��s
t �@

�
N@f k2 D hN@f; �3�2s

t �@@
�
N@f i C O

	kN@f ksk��s
t �@

�
N@f k


D hN@f; �3�2s
t �@f i C O

	kN@f ksk��s
t �@

�
N@f k


D O
��

kN@f ks C kf ks
�
k��s

t �@
�
N@f k

�
:

Summing as before, we obtain the estimate

k@�
N@f ks � C.kN@f ks C kf ks/:

Putting (4.4.5.5) into this last estimate gives

k@�
N@f ks � �Ck@�

N@f k2s C C 0.�/.kf k2s C kN@f k20/:

If we choose � > 0 small enough, then we may absorb the first term on the right
into the left-hand side and obtain

k@�
N@f ks � C �

�
kf ks C kN@f k0

�
: (4.4.5.6)

But the operator @
�

is closed since the adjoint of a densely defined operator is always
closed. It follows from the open mapping principle that

kN@f k � Ck@�
N@f k:

On the other hand, @
�
N@ is projection onto the orthogonal complement of A2.˝/:

Thus it is bounded in L2, and we see that

kN@f k � Ckf k0:

Putting this information into (4.4.5.6) gives

k@�
N@f ks � Ckf ks:

If we recall that P D I 	 @�
N@, then we may finally conclude that

kPf ks � Ckf ks:

That concludes the proof. ut
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Exercises

1. Is there a maximum principle for functions that are annihilated by the invariant
Laplacian on the ball?

2. The “invariant Laplacian” on the ball is in fact the Laplace–Beltrami operator
for the Bergman metric. Use the Fefferman’s ideas to produce an approximate
formula for the Laplace–Beltrami operator for the Bergman metric on a strictly
pseudoconvex domain.

3. Prove that, if a function is annihilated by the invariant Laplacian on the ball,
then it must be real analytic.

4. Prove that the converse to Exercise 3 is false.
5. Prove that not every continuous function on the boundary of the ball is the

boundary trace of a pluriharmonic function on B . [Note that this is in contrast
to the situation for harmonic functions on the disc in the complex plane.]

6. Refer to Exercise 5. Bedford and Federbush [BEDF] have found a fourth-order
partial differential equation that the boundary trace of a pluriharmonic function
must satisfy. Look up that paper to learn what the differential equation is. Verify
that the function u.z/ D 2Re z1Cz22Cz22 is indeed annihilated by this differential
equation.

7. What is the bigraded spherical harmonic expansion of the function u.z1; z2/ D
jz1j2 C jz2j2?

8. A basic result of classical Fourier analysis is that if the Fourier series of a
function sums to the identically zero function, then the function must be the
zero function. Is there an analogous result for bigraded spherical harmonic
expansions? How would you prove it?

9. A basic result of classical Fourier analysis is that the Fourier coefficients of an
L1 function must tend to zero (this is the Riemann–Lebesgue lemma). Is there
an analogous result for bigraded spherical harmonic expansions? How would
you prove it?

10. A basic result of classical Fourier analysis is that the Fourier coefficients of
an L2 function in fact form an L2 sequence. Is there an analogous result for
bigraded spherical harmonic expansions? How would you prove it?



Chapter 5
Further Geometric Explorations

5.1 Introductory Remarks

A domain ˝ in C
n is a connected, open set. An automorphism of ˝ is a

biholomorphic self-map. The collection of automorphisms forms a group under
the binary operation of composition of mappings. The standard topology on this
group is uniform convergence on compact sets, or the compact-open topology. We
denote the automorphism group by Aut.˝/. When ˝ is a bounded domain, the
group Aut.˝/ is a real (never a complex) Lie group.

Although domains with transitive automorphism group are of some interest, they
are relatively rare (see [HEL, Sect. III.3]). A geometrically more natural condition
to consider, and one that gives rise to a more robust and broader class of domains,
is that of having non-compact automorphism group. Clearly a domain has non-
compact automorphism group if there are automorphisms f'j g which have no
subsequence that converges to an automorphism. The following proposition of Henri
Cartan is of particular utility in the study of these domains.

Proposition 5.1.1. Let ˝ � C
n be a bounded domain. Then ˝ has non-compact

automorphism group if and only if there are a point X 2 ˝, a point P 2 @˝, and
automorphisms 'j of ˝ such that 'j .X/ ! P as j ! 1.

In fact it is useful to put this result into a more general context:

Theorem 5.1.2. Let ˝ be a bounded domain in C
n. Let f'j g � Aut.˝/ be

a sequence of automorphisms of ˝. Suppose that 'j converges, uniformly on
compact subsets of ˝, to a holomorphic mapping ' W ˝ ! C

n. Then the following
three properties are equivalent:

(i) ' 2 Aut.˝/.
(ii) '.˝/ 6� @˝.

(iii) There exists a point P 2 ˝ such that the Jacobian matrix .@'i=@zj .P //, for
' D .'1; '2; : : : ; 'n/, has a nonzero determinant.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 5,
© Springer Science+Business Media New York 2013
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We leave it to the reader to determine why the proposition follows from the
theorem. Now we shall concentrate on proving the theorem.

We begin with three preliminary lemmas.

Lemma 5.1.3. Let˝ � C
n and f W ˝ ! C

n be a holomorphic mapping. Suppose
that det.df /P ¤ 0 for some P 2 ˝. Then there exist neighborhoods U of P and
V of f .P / such that f .U / � V and f jU are analytic isomorphisms onto V .

Of course this lemma is nothing other than a holomorphic version of the inverse
function theorem in several complex variables. We have proved it in Theorem
1.1.12.

Lemma 5.1.4. Let fgj g be a sequence of continuous open mappings of ˝ � C
n

into C
n. Suppose that the gj converge, uniformly on compact sets, to a limit

mapping g W ˝ ! C
n.

Further suppose that, for some pointP 2 ˝,P is an isolated point of g�1.g.P //.
Then, for any neighborhood U of P , there is an index j0 such that g.P / 2 gj .U /

for j � j0.

Interestingly, this lemma is topological rather than analytic.

Proof of Lemma 5.1.4: Seeking a contradiction, we suppose the assertion to be
false. Passing to a subsequence, we may suppose that U is such that

U is compact, g.P / 62 gj .U /, for j D 1; 2; : : : , and U \ g�1.g.P // D fP g.

Then g.@U / is compact and g.P / 62 g.@U /. Therefore there is a neighborhood V
of g.@U / and a polydisc Q about g.P / so that

Q \ V D ; : (5.1.4.1)

Now, if j0 is large enough, then gj .@U / � V for j � j0. Since gj is an open
mapping, we see that @gj .U / � gj .@U /. Thus gj .U / is a relatively compact-open
set in C

n with @gj .U / � V .
We claim that .@gj .U // \ Q 6D ; if j is large enough. [This would contradict

(5.1.4.1) and end the proof.] Since g.P / 2 Q and gj .P / ! g.P /, we see that if j
is large then gj .P / 2 Q. But g.P / 62 gj .U / by hypothesis. If f@gj .U /g \ Q D ;,
then we would have

Q D fgj .U / \ Qg [ f.Cn n gj .U // \ Qg ;

and each of the open sets in this last display is nonempty. [Note that gj .P / belongs
to the first open set and g.P / belongs to the second.] This contradicts the fact that
Q is connected. Hence, f@gj .U /g \ Q 6D ;, and the lemma is proved.

Now our last lemma is this:

Lemma 5.1.5 (Hurwitz’s theorem). Let˝ be an open, connected set in C
n and let

ffj g be a sequence of holomorphic functions on˝. We assume that the fj converge



5.1 Introductory Remarks 149

uniformly on compact sets to a holomorphic function f . Then, if fj .z/ ¤ 0 for all
indices j and all z 2 ˝, and if f is nonconstant, then f .z/ ¤ 0 for all z 2 ˝.

Proof. Seeking a contradiction, we suppose that f .P / D 0 for some P 2 ˝. Let
Q be a small open polydisc about P . Then f 6� 0 on Q (since, if it were identically
0, then f would be identically 0 on ˝ since ˝ is connected). Let R 2 ˝ be a point
where f does not vanish. Set

D D f� 2 C W P C �.R 	 P / 2 Qg :
Then D is a convex and hence a connected open set in C. Set

'j .�/ D fj .P C �.R 	 P // ;
'.�/ D f .P C �.R 	 P // :

Then '.0/ D 0, '.1/ D f .R/ ¤ 0. Hence, ' is nonconstant on D. Thus for large
values of the index j , 'j is also nonconstant, hence an open mapping of D into
C. Thus by the preceding lemma, fj .˝/ � 'j .D/ � f0g if j is large. That is a
contradiction.

Proof of Theorem 5.1.2

(i) ) (ii) Obvious.

(i) ) (iii) If ' 2 Aut.˝/ and P 2 ˝ and if we set  D '�1 2 Aut.˝/, then we
have

 ı ' D identity :

Thus .d /'.P / ı .d'/P D identity, so that .d'/P is invertible.

(iii) ) (ii) If .d'/P has nonzero determinant, then by our first lemma, '.˝/
contains a nonempty neighborhood of '.P /, hence '.˝/ 6� @˝.

(ii) ) (iii) Obviously '.˝/ � ˝. Thus if (ii) holds, then '.˝/ \ ˝ ¤ ;. Let
P 2 ˝ be a point such that '.P / D R 2 ˝. Let  j D '�1

j . Choose a subsequence
jk such that f jk g converges uniformly on compact subsets of ˝ to a mapping
 W ˝ ! C

n. Now we have

 .R/ D lim
k!1'�1

jk
.'.P // :

Furthermore, if k is large enough, then 'jk .P / is close to '.P /. Hence, 'jk .P / lies
in a compact subset of˝. Since '�1

jk
converges uniformly on compact subsets of˝,

we may conclude that

 .R/ D lim
k!1'�1

jk
.'jk .P // D lim

k!1P D P :
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As a result,  .R/ D P 2 ˝. Let V be a small neighborhood of R. Then  .V / lies
in a compact subset of ˝; hence, there is a K compact in ˝ so that  jk .V / � K

for k large. Then, for z 2 V , we have (since gjk .V / � K and 'jk ! ' uniformly
on K) that

'. .z// D lim
k!1'. jk .z//

D lim
k!1'jk . jk .z//

D z :

As a result, .d'/ .z/ ı .d /z D identity for z 2 V . In particular, det..d'/w/ ¤ 0 for
w 2  .V /, which proves (iii).

(iii) ) (i) Note that the function gj .z/ D det.d'j /z is holomorphic on ˝ and
converges to g.z/ D det.d'/z uniformly on compact subsets of ˝. If (iii) holds,
then g.z/ ¤ 0. Also gj .z/ ¤ 0 for all j and all z since 'j 2 Aut.˝/ [refer to
the proof that (i) ) (iii)]. If g.z/ is constant, then g.z/ is obviously never 0, and
if g.z/ is nonconstant, then it is again never 0 by the third lemma above. In either
case, g.z/ ¤ 0 for all z 2 ˝. By the first lemma, ' W ˝ ! C

n is an open mapping,
and any z 2 ˝ is isolated in '�1.'.z//. It follows from the second lemma that
'.˝/ � ['j .˝/ D ˝.

Let fjkg be a subsequence of fj g so that  jk converges uniformly on compact
subsets of ˝. Then, for z 2 ˝, f'jk .z/g converges to '.z/ 2 ˝, hence lies in a
compact subset of ˝. Therefore

 .'.z// D lim
k!1 jk .'jk .z// D z

for all z 2 ˝. In particular, det.d /w ¤ 0 for w 2 '.˝/. As a result, repeating the
preceding argument, we conclude that  .˝/ � ˝. Hence,  jk .z/ lies in a compact
subset of ˝ for any z 2 ˝. We conclude that

'. .z// D lim
k!1'jk . jk .z// D z :

Therefore ' ı  D identity,  ı ' D identity, and we find that ' 2 Aut.˝/.

We say that a domain ˝ � C
n has Ck boundary, k � 1 an integer, if it is possible

to write

˝ D fz 2 C
n W �.z/ < 0g

for a function � that is Ck and which satisfies r� ¤ 0 on @˝. This definition
is equivalent to a number of other natural definitions of Ck boundary for a domain
(see the Appendices in [KRA1]). Below we shall define a topology on the collection
of domains with Ck boundary.
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Domains with compact automorphism group exhibit certain rigidities which
are of interest for our studies. We begin this section by showing that, for certain
smoothly bounded domains with compact automorphism group, the convergence
of automorphisms will take place in a much stronger topology than the standard
one specified in the first paragraph. This fact has intrinsic interest but is also of
considerable use for further studies in complex function theory. It is even new in the
context of one complex variable.

As an application of the ideas in the last paragraph, we offer a new result about
the semicontinuity of the automorphism group under perturbation of the underlying
domain. This generalizes results of [GRK1]. We also offer a direct generalization
of the result of [GRK1, Theorem 0.1] to finite-type domains. Some of the proof
techniques presented here are new.

5.2 Semicontinuity of Automorphism Groups

Symmetry is easily destroyed but not so easily created. To turn a symmetric object
into an asymmetric one requires only an arbitrarily small effort, while to turn an
asymmetric object into a symmetric one requires a distinct push.

These intuitions that symmetry is unstable but an increase in symmetry requires
a substantial change hold with precision in a variety of circumstances. The goal
of this section is a result of this type for the automorphism groups of C1 strictly
pseudoconvex domains. This result will depend for its proof on a theorem in the
context of the compact Riemannian manifolds that is similar in spirit. [EBI1,EBI2]:

Theorem 5.2.1 (Ebin). If .M; g0/ is a C1 compact Riemannian manifold, then
there is a neighborhood G of g0 in the C1 topology on the C1 Riemannian metrics
such that: If g 2 G then there is a diffeomorphism F W M ! M (C1 close to the
identity) such that the set

˚
F ı ˛ ı F �1 W ˛ W M ! M is an isometry for g

�

is a subset of and hence a subgroup of

fˇ W ˇ W M ! M is an isometry for g0g :

In particular, the group of isometries of M relative to g is isomorphic to a subgroup
of the group of isometries of g0.

Ebin’s original proof of the theorem just stated involved infinite-dimensional
manifolds and the construction of “slices” in the Lie group sense for the action
of the diffeomorphism group on the manifold M . However, the result can in fact
be established by finite-dimensional methods and ordinary Lie group theory. See
[KIMYW] for the details.
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The possibility of averaging over compact groups gives a useful corollary about
group actions as such. For the statement of the corollary, we say that a sequence of
C1 group actions Gj �M ! M sub-converges in the C1 topology to an action
G0 �M ! M if every sequence ˛j of Gj -action elements has a subsequence ˛jk
which converges in the C1 topology to a G0-action element.

Corollary 5.2.2. If Gj �M ! M is a sequence of actions on a compact manifold
M by compact Lie groups Gj and if the Gj -actions sub-converge in the C1
topology to a compact Lie group action G0 � M ! M , then for all j sufficiently
large, there is a diffeomorphism Fj W M ! M such that the conjugation by Fj of
the Gj -action is a subgroup of the G0-action. Moreover, the Fj may be chosen to
converge to the identity map of M in the C1 topology.

This corollary follows from the proof of Ebin’s theorem (Theorem 5.2.1) by
averaging a fixed Riemannian metric over the group actions to produceGj -invariant
metrics gj converging in the C1 topology to a G0-invariant metric g0.

Generically, that is for a dense open set of metrics, the isometry group is in fact
the identity alone (see [EBI1, EBI2]). Our interest here, however, is in the metrics
which have a nontrivial isometry group.

The main goal of this section is to prove the statement analogous to Ebin’s
theorem (Theorem 5.2.1) for C1, strictly pseudoconvex domains:

Theorem 5.2.3 ([GRK2]). If˝0 is a bounded, C1, strictly pseudoconvex domain
in C

n that is not biholomorphic to the ball, then there is a neighborhood U of ˝0 in
the C1 topology (on bounded domains with the C1 boundary) such that if˝ 2 U ,
then there is a real diffeomorphism F W ˝ ! ˝0 such that F is C1 close to the
identity and

˚
F ı ˛ ı F �1 W ˛ 2 Aut.˝/

� � Aut.˝0/:

In particular, Aut.˝/ is isomorphic to a subgroup of Aut.˝0/.

The essential idea of the proof of this theorem is to note, from the Lu Qi-Keng
theorem (Theorem 5.8.1), that the Bergman metric of ˝0 does not have constant
holomorphic sectional curvature, while at the same time the holomorphic sectional
curvature is asymptotically constant at the boundary. So far, this is just a recapitu-
lation of the curvature proof of Bun Wong’s theorem (Sect. 3.4). Noting further that
these curvature estimates are stable under C1 perturbations of @˝0, one expects
to find that the smooth extension to the closure cl.˝0/ of Aut.˝0/, guaranteed by
Fefferman’s result on smoothness to the boundary, [FEF1, Part I] will also be stable
under perturbation of @˝0 in the following sense: If ˝ is C1 close to ˝0, then
Aut.˝/ on cl.˝/ is C1 close to Aut.˝0/ on cl.˝0/ in the sense that each element
of Aut.˝/ belongs to some pre-chosen C1 neighborhood of Aut.˝/ on cl.˝0/.
Of course cl.˝0/ is a compact manifold with boundary so that Ebin’s theorem
(Theorem 5.2.1) as just stated and proved (for manifolds without boundary) does
not apply as such. But, by passing to the “metric double” and introducing suitable
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automorphism-invariant metrics, we can apply Ebin’s theorem on manifolds without
boundary. We now turn to a more detailed version of the outline just given.

The detailed proof will be based on two propositions:

Proposition 5.2.4. If ˝0 is a C1 strictly pseudoconvex domain and if ˝0 is not
biholomorphic to the unit ball, then there is a point p in˝0, a compact setK0 � ˝0,
and a C1 neighborhood V of ˝0 in the C1 topology on domains such that, if
˝ 2 V , then ˝ � K0 [ fpg and the Aut.˝/-orbit of p lies in K0.

Proposition 5.2.5. If˝0 is a C1 strictly pseudoconvex domain not biholomorphic
to the unit ball then, for each ` D 1; 2; : : : , there is a C1 neighborhood V of ˝0

and a positive constant C` such that, for each ˝ 2 V and each f 2 Aut.˝/, the
Euclidean derivatives of order � ` of f at points p 2 ˝ have absolute value � C`.

For brevity, we shall summarize this last statement by saying that
The derivatives of order � ` of elements in Aut.˝/ are stably uniformly bounded

(where “stably” refers to variation of˝ near˝0 and “uniformly” refers to variation
over the points of the domain ˝).

This proposition, which is in effect a stable version of smoothness-to-the-
boundary theorem by Fefferman, will be established later.

Armed with these propositions, we can now establish the following lemma of
normal families type.

Lemma 5.2.6. If ˝j , j D 1; 2; : : : , converge in the C1 topology to ˝0 (with
˝0 being C1, strictly pseudoconvex, and not biholomorphic to the ball), and if
gj 2 Aut.˝j /, then there are subsequences ˝jk , gjk , k D 1; 2; : : : , such that gjk
converges in the C1 topology to an element g0 2 Aut.˝0/.

Hereinafter, we write Gj D Aut.˝j / and G0 D Aut.˝0/. The lemma then says
in effect that, for j large, the action of each element of Gj is close to the action of
an element of G0.

Proof of the Lemma: Fix a point p and a compact set K0 as in Proposition 5.2.4.
Then, for j large, gj .p/ 2 K0 � ˝j . By normal families, there is a subsequence
gjk which converges uniformly on each compact subset of ˝0. And the limit
of this subsequence is an element g0 of G0 (this follows from a straightforward
modification of Theorem 4, page 78 of [NAR]). A standard result of Cartan then
implies the C1 convergence of fgjk g on cl.˝jk / [respectively to g0 on cl.˝0/].

To check this last assertion in detail, it suffices to show that fgjk g on cl.˝jk / is
a Cauchy sequence in the C`C1 norm for each fixed ` D 1; 2; : : : . For this, suppose
that � > 0 is given. Choose a compact set K � ˝0 such that, for all ˝ which
are C1 close enough to ˝0 and x 2 @˝, there is a polygonal arc in ˝, of length
not exceeding �=Œ3C`C1
, from some point s 2 K to the point x. [Here C`C1 is the
constant from Proposition 5.2.5.] The possibility of choosing K in this fashion is
elementary: Simply let the set K be the �=Œ4C`
 normal “push-in” of ˝0.

Now choose k0 so large that (from Cauchy estimates), gjK˝1 	g0 and gjK˝2 	g0
have C` norm on K bounded above by �=3 if K˝1;K˝2 � k0. For such K˝1 , K˝2 ,
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the C` norm of the difference gjK˝1 	gjK˝2 is � � on cl.˝K˝1
/, cl.˝K˝2

/ provided
that K˝1 , K˝2 are also required to be so large that ˝K˝1

, ˝K˝2
are sufficiently C1

close to ˝0 and hence to each other.

Lemma 5.2.7. There is a neighborhood V of ˝0 in the C1 topology on domains
and a family g˝ , ˝ 2 V , with g˝ a C1 Riemannian metric on cl.˝/ such that (1)
if Aut.˝/ acts isometrically on g˝ and (2) if f˝j g is a sequence in V converging
C1 to ˝0, then fg˝j g converges C1 to g˝0 .

Proof. Set g˝0 equal to the average with respect to Aut.˝0/ of the Euclidean metric
on cl.˝0/. For each ˝ ¤ ˝0, choose diffeomorphisms F˝ W cl.˝/ ! cl.˝0/

such that F˝ converges as ˝ tends to ˝0 in the C1 topology. Set g˝ equal to the
average over the compact (for V small enough) group Aut.˝/ of the pullback metric
F �̋ g˝0 . By arguments in [GRK3], each element of Aut.˝/ acts nearly isometrically
on F �̋ g˝0 , in the C1 sense of “nearly,” on cl.˝/. This is because g˝0 is Aut.˝0/-
invariant and each element of Aut.˝/ is C1 close to an element of Aut.˝0/. The
convergence conclusion of the lemma follows.

Lemma 5.2.8. The metrics g˝ in Lemma 5.2.7 can be chosen to be product metrics
near the boundary.

Here “the product metric” near the boundary of ˝ means precisely that, for each
boundary point x of cl.˝/, there is a real local coordinate system .x1; x2; : : : ; x2n/

in a neighborhood of x with:

• The boundary cl.˝/ n˝ equaling f.x1; x2; : : : ; x2n�1; 0/g
• The points of ˝ in the neighborhood of x satisfying x2n < 0 (and vice versa)
• The metric in the given neighborhood having at .x1; x2; : : : ; x2n/ the form

dx22n C 	
a positive definite quadratic form

in dx1; dx2; : : : ; dx2n�1 with coefficients

depending only on .x1; x2; : : : ; x2n�1/



Proof of Lemma 5.2.8: An Aut.˝/ product metric of this sort at and near the
boundary is easily obtained using the map

@˝ � Œ0; ı/ ! ˝

defined by

.b; t/ 7! expp.tN / ;

where N is the inward-pointing normal at b relative to the previous g˝ metric
and expp is the g˝-exponential map. Choose ı so small that the map is a
diffeomorphism and define the metric by declaring this diffeomorphism to be
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isometric for Œ.the metric on @˝/ C dt 2
. This construction is Aut.˝/-invariant.
Using an Aut.˝/-invariant partition of unity to make a transition to the previous
g˝ will provide all properties: The partition of unity function is taken to depend
only on the t variable.

The proof of Theorem 5.2.3 can now be completed as follows: With the metrics g˝
chosen as in Lemma 5.2.8, in particular as product metrics near the boundary, we
form the compact Riemannian manifolds . Ő ; Og˝/ by taking Ő to be the manifold
“double” of˝ and Og˝ to be the natural metric on Ő , equal to g˝ on each copy of˝
and fitting together to form a C1 metric across the (one copy of) @˝ on account of
the product metric. Let G˝ be the group generated by Aut.˝/ and the interchange
operation I˝ that interchanges the two copies of ˝ that are “glued” to form Ő .
We now apply Ebin’s theorem (Theorem 5.2.1) to deduce that the isometry group
of Ő is diffeomorphism-conjugate (via a diffeomorphism close to the identity) to
a subgroup H˝ of the isometry group of Ő

0. Now, by our previous analysis via
normal families, H˝ lies in a small neighborhood of G˝0 in the isometry group
of Ő

0. This isometry group is a compact Lie group and G˝0 is a compact, hence
closed, subgroup and H˝ is also compact and therefore closed. Standard Lie group
theory yields thatH˝ is conjugate to a subgroup ofG Ő0 by way of an isometry of Ő

0

close to the identity. Thus the diffeomorphism conjugation together with this second
conjugation gives a close-to-the-identity diffeomorphism F W ˝ ! ˝0 conjugating
G Ő to G Ő0 .

Now G Ő0 contains I˝0 . Also the only possible fixed points of an element of G Ő
that is not preserving each copy of˝ are lying in @˝. It follows that F in fact maps
@˝ diffeomorphically to @˝, and thus F , being close to the identity, maps˝ to˝0.
As a result,

F
ˇ̌
cl.˝/ W cl.˝/ ! cl.˝0/

is the conjugating diffeomorphism called for in the theorem.

The reader with a mind towards maximum generality will have noticed that
complex analysis really played no role in the latter part of this proof. In particular,
the proof technique gives rise to the following results:

Theorem 5.2.9 (Ebin’s Theorem for Manifolds with Boundary). If .M; g0/ is a
compact, theC1 Riemannian manifold with boundary, then there is a neighborhood
U of g0 in the C1 topology on the Riemannian metrics such that, for each g 2 U ,
there is a diffeomorphism F W M ! M (which can be chosen to be C1 close to
the identity) such that, for each g-isometry f W M ! M , the mapping F �1 ıf ıF
is a g0 isometry.

Theorem 5.2.10. If G0 is a compact subgroup of the diffeomorphism group of a
compact manifold (possibly with boundary), then there is a neighborhood V of G0
in the C1 topology on the diffeomorphism group such that every compact subgroup
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G of the diffeomorphism group, with G � V , is conjugate to a subgroup of G0 via
a diffeomorphism (which may be taken C1 close to the identity).

The proofs of these results are obtained by extracting suitable portions of the proof
of Theorem 5.2.2.

5.3 Convergence of Holomorphic Mappings

Throughout this section, and in subsequent parts of the chapter, we shall use
the concept of finite type as developed by Kohn–Catlin–D’Angelo. See [KRA1,
Sect. 11.5] for an explication of these ideas. For completeness we supply the relevant
definitions here.

Next we shall develop in full generality both the geometric and the analytic
notions of “type” for domains in complex dimension 2: In this low-dimensional
context, the whole idea of type is rather clean and simple (misleadingly so).
In retrospect we shall see that the reason for this is that the varieties of maximal
dimension that can be tangent to the boundary (i.e., one-dimensional complex
analytic varieties) have no interesting subvarieties (the subvarieties are all zero
dimensional). Put another way, any irreducible one-dimensional complex analytic
variety V has a holomorphic parametrization � W D ! V: Nothing of the kind is
true for higher-dimensional varieties. 8

5.3.1 Finite Type in Dimension Two

We begin with the formal definitions of geometric type and of analytic type for a
point in the boundary of a smoothly bounded domain ˝ � C

2: The main result of
this subsection will be that the two notions are equivalent. We will then describe, but
not prove, some sharp regularity results for the @ problem on a finite-type domain.
Good references for this material are [KOH2, BLG, KRA1].

Remark 5.3.3: The idea of commutator is an essential concept from symplectic
geometry. You will see that it fits the context here very nicely.

Definition 5.3.3. A first-order commutator of vector fields is an expression of the
form

ŒL;M
 � LM 	ML:

Here the right-hand side is understood according to its action on C1 functions:

ŒL;M
.�/ � .LM 	ML/.�/ � L.M.�// 	M.L.�//:

Inductively, an mth order commutator is the commutator of an .m 	 1/st order
commutator and a vector field N: The commutator of two vector fields is again a
vector field.
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Definition 5.3.4. A holomorphic vector field is any linear combination of the
expressions

@

@z1
;

@

@z2

with coefficients in the ring of C1 functions.
A conjugate holomorphic vector field is any linear combination of the expres-

sions

@

@Nz1 ;
@

@Nz2
with coefficients in the ring of C1 functions.

Definition 5.3.5. Let M be a vector field defined on the boundary of ˝ D fz 2
C
2 W �.z/ < 0g: We say that M is tangential if M� D 0 at each point of @˝:

Now we define a gradation of vector fields which will be the basis for our definition
of analytic type. Throughout this section ˝ D fz 2 C

2 W �.z/ < 0g and � is C1:
If P 2 @˝ then we may make a change of coordinates so that @�=@z2.P / ¤ 0:

Define the holomorphic vector field

L D @�

@z1

@

@z2
	 @�

@z2

@

@z1

and the conjugate holomorphic vector field

NL D @�

@Nz1
@

@Nz2 	 @�

@Nz2
@

@Nz1 :

Both L and NL are tangent to the boundary because L� D 0 and NL� D 0: They are
both nonvanishing near P by our normalization of coordinates.

The real and imaginary parts of L (equivalently of NL) generate (over the ground
field R) the complex tangent space to @˝ at all points near P: The vector field
L alone generates the space of all holomorphic tangent vector fields and NL alone
generates the space of all conjugate holomorphic vector fields. Again we stress that
we are working in complex dimension two.

Definition 5.3.6. Let L1 denote the module, over the ring of C1 functions,
generated by L and NL: Inductively, L� denotes the module generated by L��1 and
all commutators of the form ŒF;G
 where F 2 L1 and G 2 L��1:

Clearly L1 � L2 � � � � : Each L� is closed under conjugation. It is not generally
the case that [�L� is the entire three-dimensional tangent space at each point of
the boundary. A counterexample is provided by
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˝ D fz 2 C
2 W jz1j2 C 2e�1=jz2j2 < 1g

and the point P D .1; 0/: We invite the reader to supply details of this assertion.

Definition 5.3.7. Let ˝ D f� < 0g be a smoothly bounded domain in C
2, and let

P 2 @˝. Let m � 2 be an integer. We say that @˝ is of finite analytic type m at
P if h@�.P /; F.P /i D 0 for all F 2 Lm�1 while h@�.P /;G.P /i ¤ 0 for some
G 2 Lm: In this circumstance we call P a point of type m:

Remark 5.3.8. A point is of finite analytic type m if it requires the commutation
of m vector fields to obtain a component in the complex normal direction. Such a
commutator lies in Lm:

If P is a point of type m, then the module Lm is precisely equal to the full,
3-dimensional real tangent space at P . This is because there is an element G with a
nontrivial complex normal component.

There is an important epistemological observation that needs to be made at this
time. Complex tangential vector fields do not, after being commuted with each other
finitely many times, suddenly “pop out” into the complex normal direction. What is
really being discussed in this definition is an order of vanishing of coefficients.

For instance, suppose that, at the point P; the complex normal direction is the z2
direction. A vector field

F.z/ D a.z/
@

@z1
C b.z/

@

@z2
;

such that b vanishes to some finite positive order at P and a.P / ¤ 0 will
be tangential at P: But when we commute vector fields, we differentiate their
coefficients. Thus if F is commuted with the appropriate vector fields finitely many
times, then b will be differentiated (lowering the order of vanishing by one each
time) until the coefficient of @=@z2 vanishes to order 0: This means that, after finitely
many commutations, the coefficient of @=@z2 does not vanish at P: In other words,
after finitely many commutations, the resulting vector field has a component in the
normal direction at P:

Notice that the condition h@�.P /;G.P /i ¤ 0 is just an elegant way of saying that
the vectorG.P / has nonzero component in the complex normal direction. Any point
of the boundary of the unit ball is of finite analytic type 2: Any point of the form
.ei� ; 0/ in the boundary of f.z1; z2/ W jz1j2Cjz2j2m < 1g is of finite analytic type 2m:
Any point of the form .ei� ; 0/ in the boundary of˝ D fz 2 C

2 W jz1j2 C 2e�1=jz2j2 <
1g is not of finite analytic type. We say that such a point is of infinite analytic type.

Now we shift gears and turn to a precise definition of finite geometric type. IfP is
a point in the boundary of a smoothly bounded domain, then we say that an analytic
disc � W D ! C

2 is a nonsingular disc tangent to @˝ at P if �.0/ D P; �0.0/ ¤ 0;

and .� ı �/0.0/ D 0 W
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Definition 5.3.9. Let ˝ D f� < 0g be a smoothly bounded domain and P 2 @˝:

Letm be a nonnegative integer. We say that @˝ is of finite geometric typem at P if
the following condition holds: there is a nonsingular disc � tangent to @˝ at P such
that for small �;

j� ı �.�/j � C j�jm

BUT there is no nonsingular disc  tangent to @˝ at P such that, for small values
of �;

j� ı �.�/j � C j�j.mC1/:

In this circumstance we call P a point of finite geometric type m:

We invite the reader to reformulate the definition of geometric finite type in terms
of the order of vanishing of � restricted to the image of �: The principal result of
this section is the following theorem:

Theorem 5.3.10. Let ˝ D f� < 0g � C
2 be smoothly bounded and P 2 @˝: The

point P is of finite geometric typem � 2 if and only if it is of finite analytic type m:

Proof. We may assume that P D 0: Write � in the form

�.z/ D 2Re z2 C f .z1/C O.jz1z2j C jz2j2/:

We do this of course by examining the Taylor expansion of � and using the theorem
of E. Borel (see [HIR]) to manufacture f from the terms that depend on z1 only.
Notice that

L D @f

@z1

@

@z2
	 @

@z1
C .error terms/:

Here the error terms arise from differentiating O.jz1z2j C jz2j2/: Now it is a simple
matter to notice that the best order of contact of a one-dimensional nonsingular
complex variety with @˝ at 0 equals the order of contact of the variety � 7! .�; 0/

with @˝ at 0 which is just the order of vanishing of f at 0:
On the other hand,
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ŒL; NL
 D
"

	 @2 Nf
@z1@Nz1

@

@Nz2

#
	
�
	 @2f

@Nz1@z1

@

@z2

�

C.error terms/

D 2i Im

�
@2f

@Nz1@z1

@

@z2

�

C.error terms/:

Inductively, one sees that a commutator of m vector fields chosen from L; NL will
consist of (real or imaginary parts of)mth order of derivatives of f times @=@z2 plus
the usual error terms. And the pairing of such a commutator with @� at 0 is just the
pairing of that commutator with dz2I in other words it is just the coefficient of @=@z2:
We see that this number is nonvanishing as soon as the corresponding derivative of f
is nonvanishing. Thus the analytic type of 0 is just the order of vanishing of f at 0:

Since both notions of type correspond to the order of vanishing of f;we are done.

Remark 5.3.11. It is worth noting that a strictly pseudoconvex boundary point (such
as in the boundary of the unit ballB) is of finite type 2. This is easily calculated with
either definition of finite type, and we encourage the reader to do so.

Likewise a boundary point P D .1; 0/ of the domain ˝ D f.z1; z2/ W jz1j2 C
jz2j2m < 1g is of finite type 2m. This is easily calculated with either definition of
finite type, and we encourage the reader to do so.

Remark 5.3.12. The value of this last theorem may be appreciated in the following
context. It is useful to know that if P 2 @˝ is a point of finite type, then nearby
boundary points are also of finite type. Further, one would like to be able to say
something about the type of those nearby points in terms of the type of P . These
goals are quite difficult to achieve in the language of geometric finite type. But, in
the argot of analytic finite type, they are quite easy. For, if G is an element of Lm so
that h@�.P /;G.P /i ¤ 0, then also h@�.P /;G.�/i ¤ 0 for � near P . Thus such �
will be of finite type at most m.

The example

˝ D f.z1; z2/ 2 C
2 W jz1j2 C jz2j2m < 1g ; 0 < m 2 Z ;

illustrates the idea. Consider the boundary point P D .1; 0/. It is of course of
finite type 2m. The nearby boundary point .ei�; 0/ for � small is also of finite type
2m. But the nearby boundary point .1 	 �;

2m
p
2� 	 �2/, � > 0 small, is strictly

pseudoconvex, hence of finite type 2.

From now on, when we say “finite type” (in dimension two), we can mean either
the geometric or the analytic definition.
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We say that a domain ˝ � C
2 is of finite type if there is a number M such that

every boundary point is of finite type not exceeding M:
The definition of finite type in higher dimensions (due to J. P. D’Angelo) is more

complex. We give it in three steps.

Definition 5.3.13. Let f be a scalar-valued holomorphic function of a complex
variable and P a point of its domain. The multiplicity of f at P is defined to be the
least positive integer k such that the kth derivative of f does not vanish at P: If m
is that multiplicity then we write vP .f / D v.f / D m:

If � is instead a vector-valued holomorphic function of a complex variable, then
its multiplicity at P is defined to be the minimum of the multiplicities of its entries.
If that minimum is m, then we write vP .�/ D v.�/ D m W
Definition 5.3.14. Let � W D ! C

n be a holomorphic curve and � the defining
function for a smoothly bounded domain ˝. Then the pullback of � under � is the
function ���.�/ D � ı �.�/:
Definition 5.3.15. Let ˝ be a smoothly bounded domain in C

n and @˝ its
boundary. Let P 2 @˝: Let � be a defining function for ˝ in a neighborhood
of P: We say that P is a point of finite type (or finite 1-type) if there is a constant
C > 0 such that

v.���/
v.�/

� C

whenever � is a nonconstant (possibly singular) one-dimensional holomorphic
curve through P such that �.0/ D P:

The infimum of all such constants C is called the type (or 1-type) of P: It is
denoted by �.M;P / D �1.M;P /:

Again, the reference [KRA1, Sect. 11.5] provides a thorough treatment, with
examples, of the concept of point of finite type.

It is a basic fact—see, for instance, [BEL1, Main Theorem, p. 103] and the
discussion in [KRA1, Sect. 11.5]—that any automorphism of a smoothly bounded,
finite-type domain ˝ extends to be a C1 diffeomorphism of the closure of
the domain ˝ to itself.1 Thus it is natural in the present context to equip the
automorphism group with a different topology which we shall call the Ck topology.
Fix k a positive integer. Let � > 0. If '0 2 Aut.˝/, then a subbasic neighborhood
of '0 is one of the form

1In fact the standard condition to guarantee such an extension to a diffeomorphism of the closures
is Bell’s ConditionR—see [KRA1, Sect. 11.5] and also our Sect. 4.4. ConditionR is guaranteed by
a subelliptic estimate for the @-Neumann problem, and that condition is known to hold on domains
of finite type.



162 5 Further Geometric Explorations

Uk;�.'0/ �
�
' 2 Aut.˝/ W

ˇ̌
ˇ̌ @˛
@z˛

.' 	 '0/ .z/
ˇ̌
ˇ̌ < � for all z 2 ˝

and all multi-indices ˛ with j˛j � k

�
:

It is easy to see that, with this topology, Aut.˝/ is still a real Lie group (see [KOB2,
Sect. V.2]) when ˝ is a bounded domain.

Our first result of this section is as follows:

Proposition 5.3.16. Let ˝ � C
n be a bounded domain with compact automor-

phism group in the Ck topology, k > 0 an integer. Let ˛ be a multi-index such that
j˛j � k. Then there is a positive, finite constant K˛ such that

sup
z2˝

ˇ̌
ˇ̌ @˛
@z˛

'.z/

ˇ̌
ˇ̌ � K˛ (5.3.16.1)

for all ' 2 Aut.˝/.

The point here is that we have a uniform bound on the ˛th derivative of all
automorphisms of ˝, that bound being valid up to the boundary. A result of this
kind was proved in [GRK1, Proposition 5.1] for the automorphism group of a strictly
pseudoconvex domain considered in the compact-open topology. That proof was
rather complicated, using the Fefferman’s asymptotic expansion for the Bergman
kernel of a strictly pseudoconvex domain [FEF1, Theorem 2] as well as the concept
of the Bergman representative coordinates [GKK, Sect. 4.2]. The proof presented
here—for the Ck topology—is much simpler and works in considerably greater
generality:

Proof of Proposition 5.3.16: Suppose to the contrary that, for some fixed multi-
index ˛, there is no bound K˛ . Then there are a sequence 'j of automorphisms of
˝ and points Pj 2 ˝ such that

ˇ̌
ˇ̌ @˛
@z˛

'j .Pj /

ˇ̌
ˇ̌ ! C1 :

But Aut.˝/ is compact, so there is a subsequence 'jk that converges in the Ck

topology to a limit automorphism '0. Let

L0 � sup
z2˝

ˇ̌
ˇ̌ @˛
@z˛

'0.z/

ˇ̌
ˇ̌ :

Let � > 0. Choose K so large that

ˇ̌
ˇ̌ @˛
@z˛

'jk .Pjk /

ˇ̌
ˇ̌ > L0 C 2�
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for k > K. Choose M so large that

ˇ̌
ˇ̌ @˛
@z˛

'jm.z/ 	 @˛

@z˛
'0.z/

ˇ̌
ˇ̌ < �

for all m > M , z 2 ˝. It then follows that, for ` > max.K;M/,

ˇ̌
ˇ̌ @˛
@z˛

'0.Pj`/

ˇ̌
ˇ̌ > L0 C � :

This is impossible.

The next result relates our different topologies on the automorphism group in an
important new way.

Proposition 5.3.17. Let k be a positive integer. Let ˝ be a smoothly bounded
domain on which

ˇ̌
ˇ̌ @˛
@z˛

'.z/

ˇ̌
ˇ̌ � K˛ (5.3.17.1)

for all ' 2 Aut.˝/, all z 2 ˝, and all multi-indices ˛ such that j˛j � k. Then any
sequence 'j of automorphisms that converges uniformly on compact sets to a limit
automorphism '0 in fact converges in the Ck�1 topology to '0.

Remark 5.3.18. As the previous result shows, the converse of this proposition is
true as well.

Proof of the Proposition: From (5.3.17.1), there is a constant K˝1 so that

ˇ̌r'j .z/ˇ̌ � K˝1

for all ' 2 Aut.˝/, all j , and all z 2 ˝. Let � > 0. Choose a compact setK � ˝ so
large that if w 2 ˝ nK, then there is a line segment `w connecting w to an element
kw 2 K (and parametrized by 	w.t/ D .1	 t /w C tkw) which has a length less than
�=K˝1 .

Now choose j so large that

ˇ̌
'j .z/ 	 '0.z/

ˇ̌
< � (5.3.17.2)

for all z 2 K. Choose a point w 2 ˝ nK. Then

ˇ̌
'j .w/ 	 '0.w/

ˇ̌ � ˇ̌
'j .w/ 	 'j .kw/

ˇ̌C ˇ̌
'j .kw/ 	 '0.kw/

ˇ̌C j'0.kw/ 	 '0.w/j
� I C II C III :

Now we know that II < � by (5.3.17.2). For I , notice that
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ˇ̌
'j .w/ 	 'j .kw/

ˇ̌ D
ˇ̌
ˇ̌
Z 1

0

d

dt

�
'j ı `w.t/


dt

ˇ̌
ˇ̌

� K˝1 � �

K˝1

D � :

A similar estimate obtains for III .
In summary,

ˇ̌
'j .w/ 	 '0.w/

ˇ̌
< 3� :

This gives the uniform convergence estimate that we want for all points of ˝. That
proves the result for k D 1.

Of course similar estimates may be applied to j.@˛=@z˛/'j .w/	 .@˛=@z˛/'0.w/j
for any j˛j < k. Thus we get convergence in the Ck�1 topology.

Corollary 5.3.19. Let ˝ � C
n be a smoothly bounded domain on which automor-

phisms satisfy uniform bounds on derivatives as in (5.3.17.1). Let 'j 2 Aut.˝/ be
a sequence of automorphisms that converges uniformly on compact sets to a limit
automorphism '0. Then in fact 'j ! '0 uniformly on ˝.

Proof. This is a special case of the preceding result.

Remark 5.3.20. Let ˝ be a strictly pseudoconvex domain with real analytic
boundary which is not biholomorphic to the ball. Then the results on uniform bounds
of derivatives of automorphisms are particularly easy to prove. For Aut.˝/ must be
compact (see [WON, Main Theorem, p. 253]). It is further known—see [GRK3]—
that there is an open neighborhood U of ˝ such that every automorphism (and its
inverse, of course) analytically continues to U . It then follows directly from Cauchy
estimates that, if ˛ is a multi-index, then

ˇ̌
ˇ̌ @˛
@z˛

'.z/

ˇ̌
ˇ̌ � K˛

for all ' 2 Aut.˝/ and all z 2 ˝.

It is possible to use the Bergman representative coordinates (see our Sect. 3.1) in
a new fashion to obtain the uniform-bounds-on-derivatives result for finite type
domains in C

2 in the compact-open topology. More precisely,

Theorem 5.3.21. Let ˝ � C
2 be a smoothly bounded, finite-type domain in C

2

with compact automorphism group in the compact-open topology. Let ˛ be a multi-
index. Then there is a constant K˛ > 0 so that

ˇ̌
ˇ̌ @˛
@z˛

'.z/

ˇ̌
ˇ̌ � K˛

for all ' 2 Aut.˝/ and all z 2 ˝.
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Proof. For a fixed w 2 ˝, let ıw denote the Dirac delta mass at w. Then of course

K.z;w/ D P.ıw/.z/ (5.3.21.1)

for all z 2 ˝, whereK is the Bergman kernel for˝ and P the Bergman projection.
Now, by a well-known formula of Kohn (see Sect. 6.6),

P D I 	 @�
N@ :

Here N is the @-Neumann operator. It follows that P is pseudolocal up to the
boundary (again see [KRA2, Sects. 7.8 and 7.9]).

Let U be a tubular neighborhood of @˝. Let L �� ˝ be a compact set so that
@L � U . Now pick w 2 @L. So there will be an r > 0, with r greater than the
radius of U , so that K. � ;w/ is smooth on ˝ \ B.w; r/.

Now assume that w 2 U \ ˝. Let Qw be the point of @˝ that is nearest to w.
Then, because we are in complex dimension 2 (see [BEF1, Theorem 3.1]), there is a
holomorphic peak function2 fQw for Qw. We may replace fQw.z/ with Œ9CfQw.z/
=10 so
that our peak function does not vanish on ˝. Continue to denote the peak function
by fQw. Then we may write

K.z;w/ D P.ıw/.z/

D
Z
˝

K.z; �/ıw.�/

D
Z
˝

K.z; �/
X
j

.˛j / �
 

1

�4j �˝4

!
� �B.w;�j /.�/ dV.�/ :

Here �S denotes the characteristic function of the set S . In the right-hand part of
this last sequence of equalities, the ˛j are positive numbers that sum to 1, and ˝4

is the volume of the unit ball in R
4 
 C

2 (see [KRA1, Sect. 1.4]). [We are simply
invoking here the mean-value property of a holomorphic function on balls.] Also
the �j is an increasing sequence of finitely many positive radii with the largest of
them equaling the distance � of w to @˝.

Now this last equals

Z
˝

K.z; �/c � f j

Qw .�/ dV.�/C E.z;w/ D f
j

Qw .z/C E.z;w/ ;

2The construction of peaking functions in [BEF1, Theorem 3.1] is quite difficult and technical.
It amounts to a delicate scaling procedure. An alternative approach to the matter, using entire
functions that grow at a certain rate at infinity, appears in [FOM]. The paper [BEF1] proves the
peak point result for domains with real analytic boundary. The paper [FOM] proves the result for
finite-type domains.
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where c > 0 is a constant, j (interpreted as a power) is a suitably chosen positive
integer, and E.z;w/ is an error term. Now we know that the first term in this last
displayed expression does not vanish on ˝ intersect a ball about w that has radius
larger than � and the error term is negligible in this regard—because the Bergman

projection of
P

j ˛j

�
1

�4j �˝4

�
�B.w;�j /.�/ is, by inspection, approximated closely in

the uniform topology by the dilated peaking function.
Thus the Bergman representative coordinates (see [GKK, Sect. 4.2] for this

concept), which are given by

bj;w.z/ D @

@�j
log

K.z; �/

K.�; �/

ˇ̌
ˇ̌
�Dw

;

are well defined on ˇw \ ˝ with ˇw D B.w; � 0/ for some � 0 > � . And the size
of bj;w may be taken to be uniformly bounded, independent of w, just by the noted
regularity properties of the Bergman kernel. Of course L \ ˇw ¤ ;.

Now fix a multi-index ˛. Then certainly j.@˛=@z˛/'.z/j is bounded by some M˛

for all ' 2 Aut.˝/ and all z 2 L. But then the Bergman representative coordinates
enable us to realize each automorphism as a linear map (namely, the Jacobian—
again see [GKK, Sect. 4.2]) on ˇw \ ˝. And the size of the coefficients of these
linear maps depends only on the Jacobian of the automorphism at the center of the
ball. Of course the center of the ball lies in a compact subset of˝, so these Jacobians
have uniformly bounded coefficients. The conclusion then is that j.@˛=@z˛/'.z/j is
uniformly bounded on L [ ˇw. And the bound is independent of w. Remembering
that w is an arbitrary element of @L, we see that j.@˛=@z˛/'.z/j is uniformly bounded
on all of ˝, uniformly for all ' 2 Aut.˝/.

5.4 The Semicontinuity Theorem

Now one of the main results of this section is the following:

Theorem 5.4.1. Let˝ be a smoothly bounded, finite-type domain in C
2 which has

compact automorphism group in the compact-open topology. Let k an integer be
sufficiently large. Then there is an � > 0 so that if˝ 0 is a smoothly bounded, finite-
type domain with Ck distance less than � from ˝, then Aut.˝ 0/ can be realized
as a subgroup of Aut.˝/. By this we mean that there is a smooth diffeomorphism
˚ W ˝ 0 ! ˝ so that

' 7	! ˚ ı ' ı ˚�1

is a univalent homomorphism of Aut.˝ 0/ into Aut.˝/.
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Proof. The proof of this result has been indicated earlier in this chapter (see also
[GRK3, Theorem 0.1]), so we only sketch the steps.

Step 1: There is a Riemannian metric, smooth on˝, which is invariant under any
automorphism of˝. We construct this metric simply by averaging the Euclidean
metric with respect to Haar measure on the automorphism group of ˝. In order
for the resulting metric to be smooth to the boundary, we must invoke the uniform
bounds on automorphism derivatives that we proved in Sect. 5.1.

Step 2: The metric in Step 1 can be modified so that it is a product metric near the
boundary, and still invariant. This is a standard construction from the Riemannian
geometry, and we omit the details.

Step 3: We may form the metric double Ő of ˝, and the resulting metric is
smooth on Ő .

Step 4: Any automorphism of ˝ can now be realized as an isometry of Ő .
Step 5: By a classical result of David Ebin [EBI1, Sect. 1], there is a semicon-

tinuity result for isometries of compact Riemannian manifolds. We may apply
this result to the isometry group of Ő . In particular, any smooth deformation ˝ 0
of ˝ gives rise to a smooth deformation c̋0 of Ő and hence to a deformation
of the invariant metric on Ő . Thus, we may compare the isometry group of the
perturbed metric to the isometry group of the original metric.

Step 6: We may unravel the construction to see that Step 5 may be interpreted
to say that the automorphism group of ˝ 0 is a subgroup of the automorphism
group of ˝ and we may extract the conjugation map ˚ from the conjugation
map provided by Ebin’s theorem.

That completes the argument.

Since we introduced the Ck metric for the space of automorphisms, it is worthwhile
to formulate a result for that topology. We have:

Theorem 5.4.2. Let ˝ be a smoothly bounded, finite-type domain in C
2. Equip

Aut.˝/ with the Ck topology, some integer k � 0. Assume that ˝ has compact
automorphism group in the Ck topology. Then there is an � > 0 so that if ˝ 0 is a
smoothly bounded, finite-type domain with Cm distance less than � from ˝ (with
m � k), then Aut.˝ 0/ can be realized as a subgroup of Aut.˝/. By this we mean
that there is a smooth mapping ˚ W ˝ 0 ! ˝ so that

' 7	! ˚ ı ' ı ˚�1

is a univalent homomorphism of Aut.˝ 0/ into Aut.˝/.

Proof. The proof is just the same as that for the last theorem. The main point is to
have a uniform bound for derivatives of automorphisms (Proposition 5.2.5), so that
the smooth-to-the-boundary invariant metric can be constructed.
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5.5 Some Examples

In this section we provide some examples which bear on the context of Theorems
5.4.1 and 5.4.2.

Example 5.5.1. Let

˝ D B.0; 2/ n B.0; 1/ :

Then ˝ is a bounded domain, but it is not pseudoconvex.
Of course any automorphism of ˝ continues analytically to B.0; 2/. But it also

must preserve S1 � fz W jzj D 1g and S2 � fz W jzj D 2g. It follows that Aut.˝/ D
U.n/. Now an obvious Lie subgroup of U.n/ is SU.n/. But SU.n/ has precisely the
same orbits as U.n/—in fact the orbit of any point in S2 is S2 itself and the orbit of
any point in S1 is S1 itself. It follows that there is no domain that is “near” to ˝ in
any Ck topology and with automorphism group that is precisely SU.n/. Therefore
an obvious sort of converse to Theorem 5.2.3 fails in this case. That is to say, not
every closed subgroup of the automorphism group of ˝ arises as the automorphism
group of a nearby domain.

We note, however, that with suitable hypotheses (including strong pseudocon-
vexity), there is a sort of converse to Theorem 5.2.3—see [MIN, Sect. 1].

Example 5.5.2. If we do not mandate that the domain ˝ have smooth boundary,
then Theorem 5.2.3 need not be true. As a simple example, consider

˝ D fz 2 C
n W 0 < jzj < 1g :

Of course this˝ is not pseudoconvex and does not have a smooth defining function
(so does not have smooth boundary by our reckoning). The automorphism group of
˝ is U.n/. A “small” perturbation of ˝ is ˝ 0 D B D fz 2 C

n W jzj < 1g. But the
automorphism group of ˝ 0 is much larger than U.n/ (it includes U.n/, but it also
includes the Möbius transformations). So semicontinuity of automorphism groups
fails.

5.6 Further Remarks

The idea of semicontinuity for automorphism groups is an important paradigm that
has far-reaching applicability in geometry. In any situation where symmetries are
considered, one may formulate the idea of semicontinuity. The basic idea is that
symmetry is hard to create but easy to destroy: small perturbations can and will
reduce symmetry, but it takes a large perturbation to create symmetry.

In the present discussion we have taken a fundamental theorem of [GRK1,
Theorem 0.1] in the strictly pseudoconvex setting and extended it in various ways
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to the finite-type setting. It would be interesting to know whether the result is true
in complete generality. Even more interesting would be an example—say in the
infinite-type context—in which semicontinuity fails.

5.7 The Lu Qi-Keng Conjecture

In the paper [BOA1,BOA2], Harold Boas gave an example of a strictly pseudocon-
vex, topologically trivial domain on which the Bergman kernel has zeroes (off the
diagonal, of course). This is a counterexample to an old question of Lu Qi-Keng.
We provide the details here.

It should first be noted that, in one complex dimension, any topologically trivial
domain (except for the entire complex plane itself) is conformally equivalent to the
unit disc. Since the kernel for the disc certainly never vanishes, we may conclude
that the kernel for the topologically trivial domain also does not vanish. Such an
analysis is not valid in higher dimensions, for in that context there is no Riemann
mapping theorem.

We note that in [GRK1] it is proved that, in the class of smoothly bounded strictly
pseudoconvex domains, the collection of domains for which the Bergman kernel
function is bounded away from zero is open. Also the collection of domains for
which the Bergman kernel has no zeros is closed. Boas’s example shows that the
second collection of domains is strictly larger than the first.

It is clear that the Bergman kernel for the ball B � Cn,

KB.z; �/ D cn � 1

.1 	 z � �/nC1 ;

has no zeros. This is a useful feature, as many geometric constructions (see [GOL])
entail division by the Bergman kernel. For instance, construction of Bergman
representative coordinates entails division by the Bergman kernel. Thus in 1966,
Lu Qi-Keng conjectured that the Bergman kernel of any bounded domain does not
vanish.

It was shown, by direct calculation, by Skwarczyński [SKW] and Rosenthal
[ROSE] that the Lu Qi-Keng conjecture fails on the annulus in the plane. By con-
trast, it is clear from conformal mapping, and the usual transformation formula for
the Bergman kernel, that the Bergman kernel of any simply connected domain in the
plane will be nonvanishing.

The operative form of the Lu Qi-King conjecture then became: The Bergman
kernel of any topologically trivial domain in Cn has no zeros. Greene and Krantz
[GRK1, GRK2] proved that the Bergman kernel of a strictly pseudoconvex domain
deforms stably under perturbation of the domain. Hence, if ˝0 � C

n is a domain
on which the Lu Qi-Keng conjecture is true, then the conjecture will remain true
on “nearby” domains, where the sense of nearby must be interpreted in a suitable
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topology on domains. Hurwitz’s theorem also shows that the limit of a sequence of
domains (again, in a suitable topology) on which the Lu Qi-Keng conjecture holds
will also have the Lu Qi-Keng property.

Thus it was a bit of a surprise when Boas [BOA1] proved that the Lu Qi-Keng
conjecture is false. We provide the details here. Indeed, consider the unbounded,
logarithmically convex, complete Reinhardt domain

˝ D f.z;w/ 2 C
2 W jwj < .1C jzj/�1g :

Of course ˝ is a complete circular domain, so any holomorphic function on ˝ will
have a globally convergent power series. Which holomorphic monomials are square
integrable on ˝? Consider the calculation

ZZ

˝

jzjwkj2 dV.z;w/ D
Z

z

Z 2�

0

Z .1Cjzj/�1

0

jzj2j r2k � r drd�dA.z/

D 2�

Z
z

r2k

2k C 2

ˇ̌
ˇ̌.1Cjzj/�1

0

� jzj2j dA.z/

D 2� �
Z

z

.1C jzj/�2k�2

2k C 2
� jzj2j dA.z/ :

Now it is plain that the integrand is integrable near the origin. As jzj ! C1, the
size of the integrand is jzj2j�2k�2. In order for this to be integrable at infinity, we
must have k > j (just use polar coordinates). But then we see that any holomorphic,
square-integrable function on ˝ will have power series expansion, in terms of
monomials zjwk , with k at least 1. Hence, the function will vanish at the origin.

The domain that we have just constructed fails the Lu Qi-Keng property, but it is
unbounded. To find a bounded example, let ˝R D ˝ \ B.0;R/. Ramadanov’s
theorem (see also [KRA8]) now tells us that the Bergman kernel K˝R for ˝R

converges uniformly on compact sets to the Bergman kernel K˝ for ˝. By
Hurwitz’s theorem, we may conclude that when R is large enough, the kernelsK˝R

will vanish.
The domain˝R is a bounded, topologically trivial domain on which the Bergman

kernel has zeros. To obtain a smoothly bounded example, we simply exhaust ˝R by
smooth, strictly logarithmically convex complete Reinhardt domains. See [KRA1,
Chap. 1] for the details of this process. Then Hurwitz’s theorem and Ramadanov’s
theorem give the result.

In the paper [BOA2], Boas shows that the Lu Qi-Keng conjecture fails “gener-
ically” in the following precise sense. Let H denote the Hausdorff distance on
domains. To describe this idea, first note that if S � R

N and x 2 R
N , then

dist.x; S/ D inf
s2S js 	 xj :
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Now, if ˝1, ˝2 are domains in C
n, then set

H.˝1;˝2/ D max

(
sup

z12˝1
dist.z1;˝2/; sup

z22˝2
dist.z2;˝1/

)
:

Following the notation and language of Boas, we now set

�1.˝1;˝2/ D H.˝1;˝2/C H.@˝1; @˝/ :

The main result in [BOA2] is as follows:

Theorem 5.7.1. The domains in C
n having the Lu Qi-Keng property are nowhere

dense in the collection of all domains with any of the following secondary
properties:

(a) bounded, pseudoconvex
(b) bounded, strictly pseudoconvex

The proof of this result would take us far afield, and we omit it. Details may be
found in [BOA2].

5.8 The Lu Qi-Keng Theorem

Next we would like to present an application of Bergman representative coordinates
to the proof of a remarkable theorem of Lu Qi-Keng on domains with a Bergman
metric of constant holomorphic sectional curvature. Our presentation here owes a
debt to [GKK].

Theorem 5.8.1 (Lu Qi-Keng). Let ˝ be a bounded domain in C
n. Assume that

the Bergman metric is complete and has constant holomorphic sectional curvature.
Then ˝ is biholomorphic to the unit ball.

Notice that this result is certainly specific to the Bergman metric. For example,
the annulus f� 2 C W 1 < j�j < Rg, R > 1 admits a complete metric of constant
(holomorphic sectional) curvature. But it is not even homeomorphic to the unit disc,
much less biholomorphic to it.

Proof of Theorem 5.8.1:

Background Information

If the curvature c were positive, then ˝ would be a complete Riemannian
manifold with all sectional curvatures greater than or equal to c=4 > 0. [This is
because of the formula for Riemannian sectional curvature in case the holomorphic
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sectional curvature is constant.] Hence, ˝ would be compact by standard Rieman-
nian geometry. [Myers’s theorem—A complete Riemannian manifold with sectional
curvature everywhere � � > 0 has diameter � �=

p
� and is hence compact [PET].]

If instead the curvature c were zero, then the universal cover of ˝ would
be a complete, simply connected Kähler manifold of sectional curvature 0 and
hence would be biholomorphically isometric to C

n. But then, since ˝ is bounded,
the covering map into ˝ would be constant by Liouville’s theorem. This would
contradict surjectivity of the covering map.

The only remaining case is that the curvature c is negative. If g˝ is the Bergman
metric of ˝ (with constant negative holomorphic sectional curvature c), then the
metric

g � 	c.nC 1/

4
g˝

has constant (negative) holomorphic sectional curvature 	4=.n C 1/. [Here g˝ is,
as usual, the Bergman metric.] Thus the simply connected covering space Ő of
˝ with the pullback Og of the metric g is a complete, simply connected Kähler
manifold with constant holomorphic sectional curvature 	4=.n C 1/. By standard
Kähler geometry (cf., [KON]), . Ő ; Og/ is biholomorphically isometric to Bn with its
Bergman metric. Thus we obtain a holomorphic covering map F W Bn ! ˝ which
is locally isometric for the Bergman metric on Bn and g on ˝, respectively.

To prove the theorem, we need only show that F is in fact injective.

The Heart of the Proof

For this let q D F.0/. Since F is a covering map, it is locally invertible. Namely,
there exists an open neighborhood U of q and a neighborhood V of 0 such that
F jV W V ! U is a biholomorphism. Denote by H0 the inverse of F jV .

With z;w 2 U , let

K0.z;w/ � KBn.H0.z/;H0.w//:

Then

@2

@zj @zk
logK0.z; z/ D gjk D � g˝jk

by the condition on F above, where � D 	 c.nC1/
4

. This implies that

@2

@zj @zk
logK0.z; z/ 	 @2

@zj @zk
� logK˝.z; z/ D 0
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for every z 2 U , and furthermore that

logK0.z;w/ 	 � logK˝.z;w/ D '.z/C '.w/

for every z;w 2 U , for some holomorphic function ' W U ! C. For this one may
need to replace U by a smaller, simply connected neighborhood. Consequently one
obtains

@

@wj
log

K0.z;w/

K0.w;w/
	 @

@wj
� log

K˝.z;w/

K˝.w;w/
D 0

for every z;w 2 U .
This gives rise to a direct computation with the Bergman representative coordi-

nate systems b1 W V ! C
n and b2 W U ! C

n. One obtains that

H0.�/ D .F jV /�1 D .b1/�1 ı A ı b2.�/ (5.8.1.1)

for every � 2 U . Here A is the linear map represented by the matrix with the .j; k/-
th entry

�
@Fk

@zj

ˇ̌
ˇ
0
:

Now look at the expressions in (5.8.1.1). The map b1 is in fact a constant
multiple of the Euclidean coordinate system. Therefore it extends to all of C

n

holomorphically. So does the linear map A. The map � ! b2.�/ extends to a
holomorphic mapping of ˝ nZq , where

Zq D f� 2 ˝ j K˝.�; q/ D 0g:

Since K˝.�; q/ is a holomorphic function on ˝ with K˝.q; q/ 6D 0, the set Zq
is an analytic variety whose complex codimension in ˝ is 1. Hence, ˝ n Zq is a
connected, dense, and open subset of ˝. Therefore using the expression of H0 in
(5.8.1.1), the map H0 extends to a holomorphic mapping of ˝ nZq into C

n. Let H
denote this extension.

Now, let X � F �1.Zq/. Then one immediately sees that

X D fz 2 Bn j K˝.F.z/; q/ D 0g:

Since K˝.F.0/; q/ D K˝.q; q/ 6D 0, we see that X is again a complex analytic
subvariety of Bn with complex codimension 1. Thus Bn nX is a connected, dense,
and open subset of Bn. Furthermore, H ı F W Bn n X ! C

n is holomorphic with
H ıF.z/ D z for every z 2 V , asH D H0 on V . This means thatH ıF.z/ D z for
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every z 2 Bn nX . Now, for every � 2 ˝ nZq , choose x 2 Bn such that F.x/ D �.
Then

H.�/ D H.F.x// D x:

This implies that H.˝ nZq/ � Bn.
We see thatH is holomorphic on˝ nZq . The removable singularity theorem for

bounded holomorphic maps (the Riemann removable singularities theorem) yields
that H extends to a holomorphic mapping of ˝ into C

n. Since H continues to
play the role of left inverse of F , it follows easily that F must be injective. That
completes the proof.

5.9 The Dimension of the Bergman Space

The material in this section has intrinsic interest, but it is also offered as an
introduction to the next section.

It is a fact (which we shall prove below) that a domain in C will have either an
1-dimensional Bergman space or a 0-dimensional Bergman space. As an instance,
the disc or the annulus have infinite-dimensional Bergman space; the entire complex
plane has zero-dimensional Bergman space.

Matters are different in several complex variables. Jan Wiegerinck [WIE] showed
that there is a domain in C

2 with positive, finite-dimensional Bergman space.
We provide the details here.

We may note that the Bergman space for a bounded domain is immediately
infinite dimensional, for all the polynomials will be in the Bergman space. The same
assertion is true for any domain that is biholomorphically equivalent to a bounded
domain. So Wiegerinck’s example will perforce be unbounded. We have:

Theorem 5.9.1. For every integer k > 0 there is a Reinhardt domain in C
2 with

k-dimensional Bergman space.

Proof. We work in C
2 (although there are analogues of these results in any

dimension greater than one). Consider the domains

X1 D f.z;w/ 2 C
2 W jwj < 1=.jzj log jzj/ ; jzj > eg

and

X2 D f.z;w/ 2 C
2 W jzj < 1=.jwj log jwj/ ; jwj > eg :

Set

˝ D X1 [X2 [ f.z;w/ 2 C
2 W jzj < 2e; jwj < 2eg :
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Lemma 5.9.2. The monomials in A2.˝/ are precisely

czkwk; k D 0; 1; 2; : : : :

Here c is some complex constant.

Proof: We calculate

Z
X1

jzj2pjwj2p dV D .2�/2
Z 1

r1De

Z 1=r1 log r1

r2D0
r
2pC1
1 r

2qC1
2 dr1dr2

D .2�/2
Z 1

e

r
2p�2q�1
1

.log r1/2qC2 dr1 :

This last integral is finite if and only if q � p. Thus

czpwq 2 A2.X1/ ” q � p : (5.9.2.1)

A similar calculation shows that

czpwq 2 A2.X2/ ” q � p : (5.9.2.2)

The result follows from (5.9.2.1) and (5.9.2.2).

Now we shall enlarge ˝ in the direction of jzj D jwj in order to get rid of the
monomials with high exponents. Set

Bm D
�
.z;w/ 2 C

2 W jzj > 1; jwj > 1; jjzj 	 jwjj < 1

.jzj C jwj/m
�
:

Also define

˝k D ˝ [ B4k ; k D 1; 2; : : : :

See Fig. 5.1.
Our goal is to show that ˝k has k-dimensional Bergman space.

Lemma 5.9.3. For k D 0; 1; 2; : : : we have

zpwq 2 A2.˝k/ ” p D q < k :
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Re w

Re z

x2

x1

B4k

k

Fig. 5.1 The domain ˝k

Proof. We calculate, using the change of variables r1 C r2 D t , r1 	 r2 D s, that

kzpwqk2
A2.Bm/

D
Z
Bm

jz2pw2pj dV

D .2�/2
Z

jr1�r2j<1=.r1Cr2/
m

r1>1;r2>1

.r1r2/
2pC1 dr1dr2



Z 1

2

.2�/2
Z .1=t/m

�.1=t/m
1

2

�
t 2 	 s2
4

�2pC1
dsdt :

This last integral converges if and only if m D 4k > 4p C 3. Then Lemma 5.9.2
and the last calculation give Lemma 5.9.3.

Proof of the Theorem: The logarithmically convex hull of the Reinhardt domain
˝k is C2. Therefore every f 2 A2.˝k/ has a holomorphic continuation to C

2. As a
result, f has a power series expansion

X
m;n

am;nzmwn

that converges to f uniformly on bounded subsets of C2. As usual B.0;R/ denotes
the ball in C

2 with center 0 and radius R. Then

kf kA2.˝k/ �
Z
˝k\B.0;R/

jf j2 dV D
X

jamnj2
Z
˝k\B.0;R/

jz2mw2nj dV : (5.9.1.1)

This last equality follows from the fact that the monomials zpwq form an orthogonal
set on every bounded Reinhardt domain, as is easily seen using polar coordinates.
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With Lemma 5.9.2, and letting R ! 1 in (5.9.1.1), we conclude that amn D 0

unless n D m < k. Thus

A2.˝k/ D spanf1; zw; z2w2; : : : ; zk�1wk�1g :

Now, to complete the discussion, we prove the following result:

Theorem 5.9.4. Let ˝ be a domain in C. Then the dimension of A2.˝/ is either 0
or 1.

Proof: After a Möbius transformation, we may assume that ˝ contains the point
1. Let f 2 A2.˝/ and suppose that f is not identically zero. There are now two
cases:
Case 1: The function f is rational. In this case we note that

Z
C

jf j2 dxdy D 1 ;

Z
˝

jf j2 dxdy < 1 :

As a result, the complement c˝ of ˝ in C has positive 2-dimensional Lebesgue
measure. It is known (see [GAR]) that, in this situation, the Cauchy transform

g.z/ D
Z
c˝

1

� 	 z
d�d� ; � D � C i� ;

is a nonconstant, bounded, holomorphic function on ˝ satisfying g.1/ D 0.
Clearly g2; g3; : : : will be in L2.˝/. Hence, dim.A2.˝// D 1.

Case 2: The function f is nonrational. We expand f in a Laurent series around the
point 1:

f .z/ D
1X
p

ckz�k ; p � 2 ; cp ¤ 0 :

We shall construct a function g 2 A2.˝/ such that g ¤ 0 and the Laurent series of
g has no terms with z�1, z�2, . . . , z�p . Let z1; z2; : : : ; zpC1 be distinct points in ˝.
Take g to be of the form

g.z/ D
pC1X
jD1

bj .f .z/ 	 f .zj //
z 	 zj

; bj 2 C :



178 5 Further Geometric Explorations

Expanding around 1 we see that

g.z/ D
1X
kD1

akz�k ;

with coefficients ak depending on bj , zj , and f . Indeed, for k D 1; 2; : : : ; p, we
have

ak D
pC1X
jD1

	bj f .zj /zk�1
j :

Now select the constants bj to be a nontrivial solution of the homogeneous linear
equations

ak D 0 ; k D 1; 2; : : : ; p :

Such solutions always exist.
Note that a1 D 0 and f 2 A2.˝/ imply that g 2 A2.˝/, and we also see that g

is nonrational (otherwise f would be rational). In particular, g 6� 0. Thus for some
q > p, aq ¤ 0. We can continue this reasoning with g instead of f and see that
dim.A2.˝// is infinite.

It is known (see [CAR, GAR]) that A2.˝/ for ˝ � C has nontrivial functions if
and only if c˝ has positive logarithmic capacity.

5.10 The Bergman Theory on a Manifold

The paper [KOB1] gives a nice presentation of the theory of the Bergman space, the
Bergman kernel, and the Bergman metric on a complex manifold. We present the
key ideas here.

5.10.1 Kernel Forms

Let M be an n-dimensional complex manifold. Let A2.M/ be the set of holomor-
phic n-forms on M such that

ˇ̌
ˇ̌Z
M

f ^ f
ˇ̌
ˇ̌ < 1 :
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The vector space A2.M/ is a separable, complex Hilbert space with inner product
given by

hf1; f2i � .	1/n2=2
Z
M

f1 ^ f 2 :

We remark that the spaceA2 could be finite dimensional. This happens, for instance,
when M is compact (see the elementary Hodge theory in [KON]). Also refer to our
Sect. 5.9 in which we give the example of Wiegerinck of a Reinhardt domain in C

2

on which the classical Bergman space is finite dimensional.
With this inner product, let h0; h1; h2; : : : be a complete orthonormal basis for

A2.M/. Then

K.z;w/ �
1X
jD0

hj .z/ ^ hj .w/

is a holomorphic 2n-form on M �M , where M is the complex manifold conjugate
toM . It is a fact that the definition ofK is independent of the choice of orthonormal
basis. We call K the (Bergman) kernel form for M .

If z is the point of M corresponding to a point z 2 M , then the set of points
.z; z/ 2 M � M is identified, in a natural fashion, with M . Thus K.z; z/ can be
thought of as a 2n-form on M .

Theorem 5.10.1. The form K.z; z/ is invariant under the group of holomorphic
transformations of M .

Remark 5.10.2. One nice feature of the differential form formalism is that the
Jacobian of the mapping is built in. Whereas our Theorem 1.1.14 had to specify
the Jacobian (twice!) explicitly, we now need not worry about it.

Proof of the Theorem: Let ˚ be any one-to-one, onto, holomorphic transformation
of M to itself. If h0, h1, h2, . . . is a complete orthonormal basis for A2.M/, then so
is ˚�h0, ˚�h1, ˚�h2, . . . a complete orthonormal basis (calculation for the reader).
Since the kernel form is independent of the choice of basis, we see immediately that

K.z; z/ D
X

˚�hj .z/ ^ ˚�hj .z/ D ˚�K.z; z/ :

That completes the proof.
If f1; f2 2 A2.M/ then, for any point z 2 M , there are real numbers .c1; c2/ ¤

.0; 0/ such that

c1f1 ^ f 1.z/ D c2f2 ^ f 2.z/ :

If c1 D 0 or c2=c1 � 1, then we say that f1 ^ f 1 � f2 ^ f 2 at z.
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Theorem 5.10.3. We have that

K.z; z/ D max
hf;f iD1

f .z/ ^ f .z/ :

If K.z; z/ ¤ 0, then an n-form f 2 A2.M/ satisfying the above identity is
unique up to a constant factor c with jcj D 1 and it is characterized by the following
two properties:

(a) hf; f i D 1.
(b) hf; f 0i D 0 for all f 0 2 A2.M/ which vanish at z.

Proof. Fix a point z 2 M and let A2.M/0 be the set of n-forms f 0 2 A2.M/ which
vanish at z. If A2.M/0 D A2.M/, then our result is trivial.

Suppose instead that A2.M/0 ¤ A2.M/. Let h0 be an element of A2.M/ which
is orthogonal to A2.M/0 and has unit length. Let g be any element of A2.M/ such
that g.z/ ¤ 0. Let c be a complex number such that g.z/ D ch0.z/. Then g 	 ch0
is in A2.M/0. Therefore A2.M/ is spanned by A2.M/0 and h0. Given z 2 M , we
can choose therefore a complete orthonormal basis h0; h1; h2, . . . for A2.M/ so that
h0.z/ ¤ 0 and h1.z/ D h2.z/ D � � � D 0. This immediately implies the theorem.

Now Theorem 5.10.3 implies the following:

Theorem 5.10.4. Let M 0 be a domain (i.e., a connected open subset) in M , and let
KM and KM 0 be the kernel forms for M and M 0, respectively. Then

KM � KM 0

in the sense that there exists a function c on M 0 such that KM D cKM 0 and 0 �
c � 1 on M 0.

Remark 5.10.5. If M n M 0 contains a nonempty, open set in M , then either
KM 0.z; z/ > KM.z; z/ or else KM 0.z; z/ D KM.z; z/ D 0 for every z 2 M 0.

We have in addition the following result:

Theorem 5.10.6. If M 0 is a domain in M and if M nM 0 is an analytic subvariety
of M with complex dimension � n 	 1, then

KM 0.z; z/ D KM.z; z/ for all z in M 0 :

Proof. Let f be a square-integrable holomorphic n-form onM 0. We shall show that
f can be continued analytically toM . Let z0 be any nonsingular point of the variety
M nM 0. Let z1; z2; : : : ; zn be local coordinates on a neighborhood U of z0 in M so
that .M nM 0/ \ U is given by z1 D z2 D � � � D zk D 0 and z0 is the origin of the
coordinate system.
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Let f be written in M 0 \ U as

f D f �dz1 ^ � � � ^ dzn ;

where f � is a function holomorphic in M 0 \ U . Let V be the plane defined by

z2 D z3 D � � � D zn D 0 :

Then f � is a function holomorphic on V n fz0g and can be expanded in a Laurent
series in z1 about the origin. Since f is square-integrable, the quantity

Z
V nfz0g

f �dz1 ^ dz1

must be finite. [It is of course essential here that f � be holomorphic.] From this fact
we may conclude that f � is a power series in z1 about the origin. [See the reasoning
on p. 363 of [BRE].] Thus f can be analytically continued toM 00, whereM 00 is the
union ofM 0 and the nonsingular points ofM nM 0. SinceM nM 0 is a subvariety of
M and dim.M nM 00/ < dim.M nM 0/, we conclude by induction that our theorem
is true.

Theorem 5.10.7. Let M and M 0 be complex manifolds of complex dimensions n
and n0, respectively. Then

KM�M 0 D .	1/nn0

KM ^KM 0 :

Proof. In the displayed formula in the theorem, the projections from M �M 0 onto
M and onto M 0 are omitted. We can think of KM and KM 0 as forms on M �M 0 in
a natural manner.

Let z0 2 M and z0’ 2 M 0. From Theorem 5.10.3, we see that there exist forms
h, h0, and h00 on M , M 0, and M �M 0, respectively, so that

hh; hi D hh0; h0i D hh00; h00i D 1 ;

KM D h ^ h at z0 ;

KM 0 D h0 ^ h0 at z0’ ;

KM�M 0 D h00 ^ h00 at .z0; z0’/ :

If KM�M 0 vanishes at .z0; z0’/, then our result is trivial. If it does not vanish at
.z0; z0’/, then h00 is characterized by these properties:

hh00; h00i D 1 and hh00; f 00i D 0 for everyf 00 vanishing at .z0; z0’/:

More precisely, h00 defined by these last two properties is unique up to a constant
factor c with jcj D 1. However, h00 ^ h00 is unique. It is easy to see that the form
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.	1/nn0
h ^ h0 on M � M 0 possesses these two properties. The proof is therefore

complete.

5.10.2 The Invariant Metric

Let M be a complex manifold of complex dimension n. Suppose that

A1 Given any point z ofM , there is a square-integrable holomorphic n-form f such
that f .z/ ¤ 0. In other words, the kernel form K.z; z/ of M is different from 0 at
every point of M .

Let z1; : : : ; zn be a local coordinate system on M . Let

K.z; z/ D K�.z; z/dz1;^ � � � ^ dzn ^ dz1 ^ � � � ^ dzn ;

where K�.z; z/ is a locally defined function. Define a quadratic Hermitian differen-
tial form ds2 by

ds2 D
X
˛;ˇ

@2 logK�

@z˛; @zˇ
dz˛dzˇ :

It is easily shown that ds2 is independent of the choice of coordinates.

Theorem 5.10.8. The quadratic form ds2 is positive semidefinite and invariant
under the holomorphic automorphisms of M .

Proof. Let z be any point of M and let z1; : : : ; zn be local coordinates around z. Let

hj D h�
j dz1 ^ � � � ^ dzn ; j D 0; 1; 2; : : : ;

be an orthonormal basis for A2.M/ such that

h0.z/ ¤ 0 ; h1.z/ D h2.z/ D � � � D 0 :

Then, from the identity K� D P
H�
j h

�
j , it follows that

ds2 D
�P1

kD1 dh�
k � dh

�
k

�

K� at z :

This shows that ds2 is positive definite.
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To prove that ds2 is invariant under a holomorphic automorphism ˚ of M , let
w1;w2; : : : ;wn be a coordinate system around the point ˚.z/. So

wi D ˚i.z1; : : : ; zn/ ; j D 1; 2; : : : ; n :

Let

K D K�dz1 ^ � � � ^ dzn D L�.˚.z/; ˚.z// � JJ ;

where J is the Jacobian @˚i=@zk . Now the invariance of ds2 follows from the
definition of ds2 and the analyticity of J .

The last proof shows that ds2 is positive definite if and only if the following
hypothesis is satisfied:

A2 For every holomorphic vector Z at z, there exists a square-integrable holomor-
phic n-form f such that f .z/ D 0 and Z.f �/ ¤ 0, where f D f �dz1 ^ � � � ^ dzn.
By a holomorphic vector Z at z, we mean simply a complex tangent vector of the
form

Z D
X

�j .@=@zj /z ;

where the �j s are complex numbers.

The metric ds2 obtained in this fashion is Kählerian and is in fact the Bergman
metric of M .

As an immediate consequence of Theorem 5.10.8, we see the following:

Theorem 5.10.9. LetM andM 0 be complex manifolds satisfying A1 and A2. Let
ds2 and ds02 be the Bergman metrics of M and M 0, respectively. Then the Bergman
metric of M �M 0 is ds2 C ds02.

From Theorem 5.10.6 we obtain:

Theorem 5.10.10. Let M 0 be a domain in M such that M n M 0 is an analytic
subvariety of M with complex dimension � n 	 1 (where n D dimM ). Then the
Bergman metric of M 0 is the restriction to M 0 of the Bergman metric of M .

Let Aut.M/ be the automorphism group of M and assume hypotheses A1 and
A2. Then Aut.M/ is a closed subgroup of the group of isometries of M equipped
with the Bergman metric. Since it is a well-known result of Myers and Steenrod (see
[KON, vol. 1]) that the group of isometries of a Riemannian manifold is a Lie group
with compact isotropy group at each point, we now have the following result:

Theorem 5.10.11. Let M be a complex manifold satisfying A1 and A2. Then the
automorphism group Aut.M/ is a (real) Lie group. Furthermore, the isotropy group
of Aut.M/ at each point of M is compact.
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Now let us specialize down to the case that M is a bounded domain in C
n. As

we usually do, call it ˝. Fix a point P 2 ˝. Then the mapping

Aut.˝/ 	! C
n � C

n2

' 7	! 	
'.P /;r'.P /


is univalent (because an automorphism, being an isometry of the Bergman metric,
is completely determined by its first-order data at a point—see [KON, vol. 1]).
This shows that the automorphism group is locally Euclidean. By the solution of
Hilbert’s fifth problem, we may conclude from this reasoning that Aut.˝/ is a Lie
group. The compactness of an isotropy group follows from Montel’s theorem and
Cartan’s classical result about limits of sequences of automorphisms. This gives an
alternative means of thinking about Theorem 5.10.11.

5.11 Boundary Behavior of the Bergman Metric

The Bergman metric on the disc D is given by

gjk D @

@z

@

@z
logK.z; z/ D @

@z

@

@z

�	 log� 	 2 log.1 	 jzj2/ D 2

.1 	 jzj2/2 :

Thus the length of a curve 	 W Œ0; 1
 ! D is given by

`B.	/ D
Z 1

0

2k	 0.t/k2
.1 	 j	.t/j2/2 dt :

It is natural to wonder what one can say about the Bergman metric on a more
general class of domains. Let ˝ � C be a bounded domain with C2 boundary, and
suppose for the moment that ˝ is simply connected. Then the Riemann mapping
theorem tells us that there is a conformal mapping ˚ W ˝ ! D. Of course then we
know that

K˝.z; z/ D j˚ 0.z/j2KD.˚.z/; ˚.z// D j˚ 0.z/j2
� � .1 	 j˚.z/j2/2 :

Then the Bergman metric on ˝ is given by

gjk D @

@z

@

@z
log

� j˚ 0.z/j2
� � .1 	 j˚.z/j2/2

�

D @

@z

@

@z

�
log j˚ 0.z/j2 	 log� 	 2 log.1 	 j˚.z/j2/ :
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Of course j˚ 0.z/j is bounded and bounded from 0 (see [BEK]). So the second
derivative of log j˚ 0.z/j2 is a bounded term. The second derivative of log� is of
course 0.

The second derivative of the remaining (and most interesting) term may be
calculated to be

@2

@z@z
logK˝.z; z/ D @2

@z@z

�	2 log.1 	 j˚.z/j2/

D @

@z

� 	2
1 	 j˚.z/j2 � �	˚ 0.z/˚.z/

�

D 2

.1 	 j˚.z/j2/2 �
h
	˚ 0

.z/˚.z/
i

� �	˚ 0.z/˚.z/


	 2

1 	 j˚.z/j2 �
h
	˚ 0.z/˚ 0

.z/
i
:

This in turn, after some simplification, equals

2j˚ 0.z/j2
.1 	 j˚.z/j2/2 : (5.11.1)

As previously noted, the numerator is bounded and bounded from 0. Hopf’s lemma
(see [KRA1, Chap. 11] tells us that .1 	 j˚.z/j2/ 
 dist@˝.z/. So that the Bergman
metric on ˝ blows up like the reciprocal of the square of the distance to the
boundary—just as on the disc.

In the case that ˝ has C2 boundary and is finitely connected—not necessarily
simply connected—then one may use the Ahlfors map (see [KRA5]) instead of the
Riemann mapping and obtain a result similar to that in (5.11.1). We omit the details.

Exercises

1. Formulate a semicontinuity theorem for automorphism groups of domains in the
complex plane C

1. Could one prove such a result using normal families?
2. Use our results on the Bergman kernel of the annulus in the plane to calculate an

asymptotic formula for the Bergman metric on the annulus.
3. Calculate the Bergman metric on the bidisc. What is the asymptotic behavior of

this metric as z tends to a point .ei� ; ei� / of the distinguished boundary? What
about the asymptotic behavior as z tends to a boundary point .ei� ; 0/ that is not
in the distinguished boundary?

4. The Bergman kernel for the annulus has zeros. Where are those zeros located?
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5. Suppose that we say that a sequence of domains ˝j approaches a domain ˝ if

k�˝j 	 �˝k ! 0

as j ! 1. Here �E is the characteristic function of the set E. Is there a
semicontinuity theorem for this topology on domains? Why or why not?

6. The Bergman space for the planar domain

˝ D C n f� 2 C W j�j � 1g

is infinite dimensional. Write down an infinite, linearly independent, set of
elements of the Bergman space on this ˝.

7. What is the invariant Laplacian on the unit disc in the plane? How is it related to
the usual Laplacian?

8. What can you say about the Lu Qi-Keng conjecture for the Bergman kernel on a
Riemann surface?

9. Is there a semicontinuity theorem for automorphism groups of Riemann sur-
faces? How would you formulate it? How might one prove it?

10. Consider open regions in the Euclidean plane. The automorphism group of a
domain is the collection of rigid motions. Can you formulate a semicontinuity
theorem for this context? How would you prove it?

11. Calculate the Bergman metric for the interior of the unit square in the plane. What
is the asymptotic boundary behavior as you approach a corner of the square?
How does this differ from the asymptotic boundary behavior as you approach an
interior point of an edge?

12. What can you say about the asymptotic boundary behavior of the Bergman metric
as you approach the boundary point .1; 0/ of the domain

˝ D f.z1:z2/ W jz1j2 C jz2j2m < 1g ; 1 < m 2 Z ‹

How does this differ from the boundary behavior as you approach the boundary
point .0; 1). [Hint: Think about the fact that˝ holomorphically covers the ball.]



Chapter 6
Additional Analytic Topics

6.1 The Diederich–Fornæss Worm Domain

The concept of “domain of holomorphy” is central to the function theory of several
complex variables. The celebrated solution of the Levi problem tells us that a
connected open set (a domain) is a domain of holomorphy if and only if it is pseudo-
convex. For us, in the present book, pseudoconvexity is Levi pseudoconvexity; this
is defined in terms of the positive semi-definiteness of the Levi form. This notion
requires the boundary of the domain to be at least C2. When the boundary is not C2

we can still define a notion of pseudoconvexity (called Hartogs pseudoconvexity)
that coincides with the Levi pseudoconvexity in the C2-case. See [KRA1, Chap. 3]
for the details. When the Levi form is positive definite then we say that the domain
is strictly pseudoconvex. The geometry of pseudoconvex domains has become an
integral part of the study of several complex variables. (See [KRA1] for basic ideas
about analysis in several complex variables.)

Consider a pseudoconvex domain ˝ � Cn. Any such domain has an exhaustion
U1 �� U2 �� U3 �� � � �˝ with [j Uj D ˝ by smoothly bounded, strictly
pseudoconvex domains. This information was fundamental to the solution of the
Levi problem (see [BERS] for this classical approach) and is an important part of
the geometric foundations of the theory of pseudoconvex domains.

It is natural to ask whether there is a dual result for the exterior of˝. Specifically,
given a pseudoconvex domain ˝, are there smoothly bounded, pseudoconvex
domains W1 �� W2 �� W3 �� � � � �� � � �˝ such that \jWj D ˝? A domain
having this property is said to have a Stein neighborhood basis. A domain failing
this property is said to have nontrivial Nebenhülle.

Early on, in 1906, F. Hartogs produced the following counterexample (which has
come to be known as the Hartogs triangle): Let ˝ D f.z1; z2/ 2 C

2 W 0 < jz1j <
jz2j < 1g.

Theorem 6.1.1. Any function holomorphic on a neighborhood of ˝ actually
continues analytically to D2.0; 1/ � D �D. Thus ˝ cannot have a neighborhood
basis of pseudoconvex domains. Instead, it has a nontrivial Nebenhülle.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 6,
© Springer Science+Business Media New York 2013
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Fig. 6.1 The function �

Proof: Let U be a neighborhood of ˝. For jz1j < 1, the analytic discs

� 7! .z1; � � jz1j/

have boundary lying in U . But, for jz1j sufficiently small, the entire disc lies in U .
Thus a standard argument (as in the proof of the Hartogs extension phenomenon—
see [KRA1, Chap. 3]), sliding the discs for increasing jz1j, shows that a holomorphic
function on U will analytically continue toD.0; 1/�D.0; 1/. That proves the result.

It was, however, believed for many years that the Hartogs example worked only
because the boundary of˝ is not smooth—it is only Lipschitz away from the origin,
and the origin is a non-manifold point at which the boundary is a finite union of
Lipschitz surfaces. Thus for over 70 years, mathematicians sought a proof that a
smoothly bounded pseudoconvex domain will have a Stein neighborhood basis. In
1977, it came as quite a surprise when Diederich and Fornæss [DIF1] produced
a smoothly bounded domain—now known as the worm—which is pseudoconvex
and which does not have a Stein neighborhood basis. In fact the Diederich–Fornæss
example is the following:

Definition 6.1.2. Let W denote the domain

W D
n
.z1; z2/ 2 C

2 W ˇ̌z1 	 ei log jz2j2 ˇ̌2 < 1 	 �.log jz2j2/
o
;

where

(i) � � 0, � is even, � is convex.
(ii) ��1.0/ D I� � Œ	�;�
.

(iii) There exists a number a > 0 such that �.x/ > 1 if jxj > a.
(iv) �0.x/ ¤ 0 if �.x/ D 1.

We illustrate the function � in Fig. 6.1.
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Notice that the slices of W for z2 fixed are discs centered on the unit circle with
centers that wind �=� times about that circle as jz2j traverses the range of values
for which �.log jz2j2/ < 1.

It is worth commenting here on the parameter � in the definition of W . The
number � in some contexts is selected to be greater than �=2. The number � D
�=2� is half the reciprocal of the number of times that the centers of the circles that
make up the worm traverse their circular path.

Many authors use the original choice of parameter ˇ, where � D ˇ 	 �=2 (see,
e.g., [BAR2,CHS,KRP1]). Here, we have preferred to use the notation �, in accord
with the sources [CHR1, CHR2].

Proposition 6.1.3. The domain W is smoothly bounded and pseudoconvex. More-
over, its boundary is strictly pseudoconvex except at the boundary points .0; z2/ forˇ̌
log jz2j2

ˇ̌ � �. These points constitute an annulus in @W .

Proposition 6.1.4. The smooth worm domain W has nontrivial Nebenhülle.

The proofs of these propositions are deferred to Sect. 6.2.

As Diederich and Fornæss [DIF1] showed, the worm provides a counterexample
to a number of interesting questions in the geometric function theory of several
complex variables. As an instance, the worm gives an example of a smoothly
bounded, pseudoconvex domain which lacks a global plurisubharmonic defining
function. It also provides counterexamples in holomorphic approximation theory.
Clearly, the worm showed considerable potential for a central role in the function
theory of several complex variables. But in point of fact the subject of the worm lay
dormant for nearly 15 years after the appearance of [DIF1]. It was the remarkable
article of Kiselman [KIS] that reestablished the importance and centrality of the
worm.

In order to put Kiselman’s work into context, we must provide a digression on
the subject of biholomorphic mappings of pseudoconvex domains. In the present
discussion, all domains ˝ are smoothly bounded. We are interested in one-to-one,
onto, invertible mappings (i.e., biholomorphic mappings or biholomorphisms) of
domains

˚ W ˝1 	! ˝2 :

Thanks to a classical theorem of Liouville (see [KRPA1]), there are no conformal
mappings, other than trivial ones, in higher-dimensional complex Euclidean space.
Thus biholomorphic mappings are studied instead. It is well known that the Riemann
mapping theorem fails in several complex variables (see [KRA1, GRK2, GRK9,
ISK]). It is thus a matter of considerable interest to find means to classify domains
up to biholomorphic equivalence.

The Poincaré program for such a classification consisted of two steps: (1) to
prove that a biholomorphic mapping of smoothly bounded pseudoconvex domains
extends smoothly to a diffeomorphism of the closures of the domains and (2) to
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then calculate biholomorphic differential invariants on the boundary. His program
was stymied for more than 60 years because the machinery did not exist to tackle
step (1). The breakthrough came in 1974 with Fefferman’s seminal article [FEF1].
In it he used remarkable techniques of differential geometry and partial differential
equations to prove that a biholomorphic mapping of smoothly bounded, strictly
pseudoconvex domains will extend to a diffeomorphism of the closures.

The Fefferman’s proof was quite long and difficult and left open the question of
(a) whether there was a more accessible and more natural approach to the question
and (b) whether there were techniques that could be applied to a more general class
of domains. Steven Bell [BEL1] as well as Bell and Ewa Ligocka [BELL] provided
a compelling answer.

Let ˝ be a fixed, bounded domain in Cn. Let A2.˝/ be the square-integrable
holomorphic functions on ˝. Then A2.˝/ is a closed subspace of L2.˝/. The
Hilbert space projection

P W L2.˝/ 	! A2.˝/

can be represented by an integration formula

Pf .z/ D
Z
˝

K.z; �/f .�/ dV.�/ :

The kernel K.z; �/ D K˝.z; �/ is called the Bergman kernel. It is an important
biholomorphic invariant. See [BERS, CHS, KRA1, Chap. 1] for all the basic ideas
concerning the Bergman kernel.

Clearly, the Bergman projection P is bounded on L2.˝/. Notice that, if ˝ is
smoothly bounded, then C1.˝/ is dense in L2.˝/. In fact, more is true: If ˝ is a
Levi pseudoconvex and smoothly bounded, then C1.˝/\fholomorphic functionsg
is dense in A2.˝/ (see [CAT3]).

Bell [BEL1] has formulated the notion of Condition R for the domain ˝. We
say that ˝ satisfies Condition R if P W C1.˝/ 	! C1.˝/. It is known, thanks
to the theory of the @-Neumann problem (see Sect. 6.6), that strictly pseudoconvex
domains satisfy Condition R. Deep work of Diederich–Fornæss [DIF3] and Catlin
[CAT1, CAT2] shows that domains with real analytic boundary, and also finite
type domains, satisfy Condition R. An important formula of Kohn, which we shall
discuss in Sect. 6.6, relates the @-Neumann operator to the Bergman projection in
a useful way (see also [KRA4, Chap. 8]). The fundamental result of Bell and Bell–
Ligocka is as follows.

Theorem 6.1.5. Let ˝j � C
n be smoothly bounded, Levi pseudoconvex domains.

Suppose that one of the two domains satisfies Condition R. If ˚ W ˝1 	! ˝2 is a
biholomorphic mapping, then ˚ extends to be a C1 diffeomorphism of ˝1 to ˝2.

This result established the centrality of Condition R. The techniques of proof
are so natural and accessible that it seems that Condition R is certainly the “right”
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approach to questions of boundary regularity of biholomorphic mappings. Work of
Boas–Straube in [BOS2] shows that Condition R is virtually equivalent to natural
regularity conditions on the @-Neumann operator.1

For later reference, and for its importance in its own right, we mention here that
the above Theorem 6.1.5 can be “localized.” To be precise, we say that a given
smoothly bounded domain ˝ satisfies the Local Condition R at a point p0 2 @˝ if
there exists a neighborhood U of p0 such that P W C1.˝/ 	! L2.˝/\C1.˝ \
U/. Then Bell’s local result is as follows; see [BEL2].

Theorem 6.1.6. Let ˝j � C
n be smoothly bounded, pseudoconvex domains, j D

1; 2. Suppose that ˝1 satisfies Local Condition R at p0 2 @˝1. If ˚ W ˝1 	! ˝2

is a biholomorphic mapping, then there exists a neighborhood U of p0 such that ˚
extends to be a C1 diffeomorphism of ˝1 \ U onto its image.

We might mention, as important background information, a result of David
Barrett [BAR1] from 1984. This considerably predates the work on which we now
concentrate. It does not concern the worm, but it does concern the regularity of the
Bergman projection. We present the details in Sect. 6.13 below.

Theorem 6.1.7. There exists a smoothly bounded, non-pseudoconvex domain˝ �
C
2 on which Condition R fails.

Although Barrett’s result is not on a pseudoconvex domain, it provides some
insight into the trouble that can be caused by rapidly varying normals to the
boundary. See [BAR3] for some pioneering work on this idea.

As indicated above, it was Kiselman [KIS] who established an important
connection between the worm domain and ConditionR. He proved that, for a certain
non-smooth version of the worm (see below), a form of Condition R fails.

For s > 0, let W s.˝/ denote the usual Sobolev space on the domain ˝ (see,
for instance, [HOR2, KRA4]). Building on Kiselman’s idea, Barrett [BAR2] used
an exhaustion argument to show that the Bergman projection fails to preserve the
Sobolev spaces of sufficiently high order on the smooth worm.

Theorem 6.1.8. For � > 0, let W be the smooth worm, defined as in Defini-
tion 6.1.2, and let � D �=2�. Then the Bergman projection P on W does not
map W s.W/ to W s.W/ when s � �.

The capstone of results, up until 1996, concerning analysis on the worm domain
is the seminal article of M. Christ. Christ finally showed that Condition R fails on
the smooth worm. Precisely, his result is the following (see [CHR1]):

Theorem 6.1.9. Let W be the smooth worm. Then there is a function f 2 C1.W/

such that its Bergman projection Pf is not in C1.W/.

1Here the @-Neumann operator N is the natural right inverse to the @-Laplacian D @
�
@C @@

�
.
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We note explicitly that the result of this theorem is closely tied to, indeed is
virtually equivalent to, the assertion that the @-Neumann problem is not hypoelliptic
on the smooth worm, [BOS2].

In the work of Kiselman et al., the geometry of the boundary of the worm plays
a fundamental role in the analysis. In particular, the fact that for large � the normal
does considerable winding is fundamental to all of the negative results. It is of
interest to develop a deeper understanding of the geometric analysis of the worm
domain, because it will clearly play a seminal role in future work in the analysis of
several complex variables.

We conclude this discussion of biholomorphic mappings with a consideration
of biholomorphic mappings of the worm. It is at this time unknown whether a
biholomorphic mapping of the smooth worm W to another smoothly bounded,
pseudoconvex domain will extend to a diffeomorphism of the closures. Of course
the worm does not satisfy Condition R, so the obvious tools for addressing this
question are not available.

Our discussion is organized as follows:
Section 6.2 gives particulars of the Diederich–Fornæss worm. Specifically, we

prove that the worm is a Levi pseudoconvex, and we establish that there is no
global plurisubharmonic defining function. We also examine the Diederich–Fornæss
bounded plurisubharmonic exhaustion function on the smooth worm.

Section 6.3 considers non-smooth versions of the worm (these originated with
Kiselman). We outline some of Kiselman’s results.

Section 6.4 discusses the irregularity of the Bergman projection on the worm. In
particular, we reproduce some of Kiselman’s and Barrett’s analysis.

Sections 6.4 and 6.5 discuss the failure of Condition R on the worm domains.

6.2 More on the Worm

We now present the details of the first basic properties of the Diederich–Fornæss
worm domain W . Recall that W is defined in Definition 6.1.2. Some material of
this section can also be found in the excellent monograph [CHS].

We begin by proving Proposition 6.1.3.

Proof of Proposition 6.1.3. Property (iii) of the worm shows immediately that the
worm domain is bounded. Let

�.z1; z2/ D
ˇ̌
ˇz1 C ei log jz2j2

ˇ̌
ˇ2 	 1C �.log jz2j2/ :

Then � is (potentially) a defining function for W . If we can show that r� ¤ 0 at
each point of @W , then the implicit function theorem guarantees that @W is smooth.

If it happens that @�=@z1.p/ D 0 at some boundary point p D .p1; p2/, then we
find that
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@�

@z1
.p/ D p1 C e�i log jp2j2 D 0

Now let us look at @�=@z2 at the point p. The first term in � differentiates to 0, and
we find that

@�

@z2
.p/ D �0.log jp2j2/ � p2

jp2j2 :

Since �.p/ D 0, we have that �.log jp2j2/ D 1. Hence, by property of � (iv),
�0.log jp2j2/ ¤ 0. It follows that @�=@z2.p/ ¤ 0. We conclude that r�.z/ ¤ 0 for
every boundary point z.

For the pseudoconvexity, we write

�.z/ D jz1j2 C 2Re
	
z1e

�i log jz2j2
C �.log jz2j2/ :

Multiplying through by earg z22 , we have that locally W is given by

jz1j2earg z22 C 2Re
	
z1e

�i log z22

C �.log jz2j2/earg z22 < 0 :

The function e�i log z22 is locally well defined and holomorphic, and its modulus is
earg z22 . Thus the first two terms are plurisubharmonic. Therefore we must check that
the last term is plurisubharmonic. Since it only depends on z2, we merely have to
calculate its Laplacian. We have, arguing as before, that

�
�
�.log jz2j2/earg z22

�
D
�
��.log jz2j2/

�
earg z22 C �.log jz2j2/�earg z22 � 0 :

Because � is convex and nonnegative [property (i)], the nonnegativity of this last
expression follows. This shows that W is smoothly bounded and pseudoconvex.

It may be worth noting explicitly that we have proved that the (locally defined)
defining function for the worm is plurisubharmonic. This does not contradict the
fact (proved by Diederich and Fornæss) that the worm has no globally defined
plurisubharmonic defining function.

In order to describe the locus of weakly pseudoconvex points, we consider again
the local defining function

�.z1; z2/ D jz1j2earg z22 C 2Re
	
z1e

�i log z22

C �.log jz2j2/earg z22 :

This function is strictly plurisubharmonic at all points .z1; z2/ with z1 ¤ 0 because
of the first two terms or where

ˇ̌
log jz2j2

ˇ̌
> �, because of the last term. Thus

consider the annulus A � @W given by

A D ˚
.z1; z2/ 2 @W W z1 D 0 and

ˇ̌
log jz2j2

ˇ̌ � �
�
:
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A direct calculation shows that the complex Hessian for � at a point z 2 A acting
on v D .v1; v2/ 2 C

2 is given by

jv1j2 C 2Re
�

v1 Nv2 ei log jz2j2

z2

�
:

By pseudoconvexity, such an expression must be nonnegative for all complex
tangential vectors v at z. But such vectors are of the form v D .0; v2/, so that the
Levi form L� � 0 on A. This proves the result.

It is appropriate now to give the proof of Diederich and Fornæss that the worm
has nontrivial Nebenhülle. What is of interest here, and what distinguishes the worm
from the older example of the Hartogs triangle, is that the worm is a bounded,
pseudoconvex domain with smooth boundary.

We now show that W does not have a Stein neighborhood basis.

Proof: What we actually show is that if U is any neighborhood of W , then U will
contain

K D f.0; z2/ W 	�� log jz2j2��g[f.z1; z2/ W log jz2j2 D � or 	� and jz1	1j < 1g :

In fact, this assertion is immediate by inspection.
By the usual Hartogs extension phenomenon argument, it then follows immedi-

ately that, if U is pseudoconvex, then U must contain

OK D ˚
.0; z2/ W 	� � log jz2j2 � � and jz1 	 1j < 1� :

Thus there can be no Stein neighborhood basis.

We turn next to a few properties of the smooth worm W connected with potential
theory. The significance of the next result stems from the article [BOS1]. In that
article, Boas and Straube established the following:

Theorem 6.2.1. Let˝ be a smoothly bounded pseudoconvex domain that admits a
defining function that is plurisubharmonic on the boundary. Then, for every s > 0,

P W W s.˝/ ! W s.˝/

is bounded. In particular, ˝ satisfies Condition R.

For the sake of completeness, we mention here that if the Bergman projection P
on a domain ˝ is such that P W C1.˝/ 	! C1.˝/ is bounded (i.e., ˝ satisfies
Condition R), then P is said to be regular, while if P W W s.˝/ ! W s.˝/ for
every s > 0 (and hence, ˝ satisfies Condition R a fortiori), P is said to be exactly
regular.
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Thanks to the result of Christ [CHR1], we now know that W does not satisfy
Condition R; hence, a fortiori it cannot admit a defining function which is
plurisubharmonic on the boundary. However, it is simpler to give a direct proof
of this fact.

Proposition 6.2.2. There exists no defining function Q� for W that is plurisubhar-
monic on the entire boundary.

Proof: Suppose that such a defining Q� exist. Then, there exists a smooth positive
function h such that Q� D h�. A direct calculation shows that the complex Hessian
for Q� at a point z 2 A acting on v D .v1; v2/ 2 C

2 is given by

L Q�.zI .v1; v2// D 2Re
h
Nv1v2

	 ih
z2

C@z2h


ei log jz2j2

i
C
h
hC2Re

	
@z1h � ei log jz2j2
ijv1j2 :

Since this expression is assumed to be always nonnegative, we must have

�
ih

z2
C @z2h

�
ei log jz2j2 D @Nz2

	
he�i log jz2j2
 � 0 ;

on A. Therefore the function g.z2/ D h.0; z2/e�i log jz2j2 is a holomorphic function
on A. Hence, g.z2/ei log jz2j2 D h.0; z2/e2 arg z2 is locally a holomorphic function.
Thus it must be locally a constant, hence a constant c on all of A.

Therefore on A,

h.0; z2/ D ce�2 arg z2

which is impossible. This proves the result.

We conclude this section with another important result about the Diederich–
Fornæss worm domain W . In what follows, we say that � is a bounded plurisubhar-
monic exhaustion function for a domain ˝ if:

(a) � is continuous on ˝.
(b) � is strictly plurisubharmonic on ˝.
(c) � D 0 on @˝.
(d) � < 0 on ˝.
(e) For any c < 0, the set ˝c D fz 2 ˝ W �.z/ < cg is relatively compact in ˝.

A bounded plurisubharmonic exhaustion function carries important geometric
information about the domain ˝.

Now Diederich–Fornæss have proved the following [DIF3] (see also [RAN] for
a simpler proof when the boundary is smoother):

Theorem 6.2.3. Let˝ be any smoothly bounded pseudoconvex domain,˝ D fz 2
C W %.z/ < 0g. Then there exists ı, 0 < ı � 1, and a defining function Q% for˝ such
that 	.	 Q%/ı is a bounded strictly plurisubharmonic exhaustion function for ˝.
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The importance of this result in the setting of the regularity of the Bergman pro-
jection appears in the following related result, proved by Berndtsson–Charpentier
[BEC] and [KOH1], respectively.

Theorem 6.2.4. Let ˝ be a smoothly bounded pseudoconvex domain, and let P
denotes its Bergman projection. Let Q� be a smooth defining function for˝ such that
	.	 Q�/ı is strictly plurisubharmonic. Then there exists s0 D s0.˝; ı/ such that

P W W s.˝/ ! W s.˝/

is continuous for all 0 � s < s0.

Remark 6.2.5. The sharp value of s0 is not known, and most likely the exact
determination of such a value might prove a very difficult task. The two sources
[BEC] and [KOH1] present completely different approaches and descriptions of s0,
that is of the range Œ0; s0/ for which P is bounded onW s , with s 2 Œ0; s0/. In [BEC]
it is proved that such a range is at least Œ0; ı=2/, i.e., they show that s0 � ı=2, while
in [KOH1] the parameter s0 is not so explicit, but it tends to infinity as ı ! 1. The
value found in [BEC] has the advantage of providing an explicit lower bound for
the regularity of the Bergman projection on a given domain, while the value given
in [KOH1] is sharp in the sense given by Boas and Straube’s Theorem 6.2.1.

The domain W serves as an example that the exponent ı may be arbitrarily small.
To illustrate this point, the following result is essentially proved in [DIF1]. Here we
add the precise estimate that such an exponent ı is less than the value �.

Theorem 6.2.6. Let ı0 > 0 be fixed. Then there exists �0 > 0 such that, for all
� � �0, the following holds. If Q% is a defining function for W D W�, with � � �0
and ı > 0 is such that 	.	 Q%/ı is a bounded plurisubharmonic exhaustion function
for W , then ı < ı0.

More precisely, we show that, in the notation above, ı < � D �=2�.

Proof: We may assume that Q� D h�, where � D �� is defined in Proposition 6.2.2
and h is a smooth positive function on W . Then, by hypothesis 	hı.	�/ı is strictly
plurisubharmonic on W .

Let

�.z1; z2/ D 	 1

2�

Z 2�

0

hı.z1; e
i� z2/

		�.z1; ei� z2/

ı

d�

D 	 1

2�

Z 2�

0

hı.z1; e
i� z2/ d�

		�.z1; z2/
ı

D 	 Qh.z1; z2/
		�.z1; z2/
ı :

Obviously, � is also strictly plurisubharmonic on W , and Qh is strictly positive and
smooth on W . We can also write Qh.z1; z2/ D h#.z1; jz2j2/, where h# is defined for
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.z1; t/ 2 C�R
C such that if jz2j2 D t then .z1; z2/ 2 W . For simplicity of notation,

we rename such a function h again.
Thus we have that

�.z1; z2/ D 	h.z1; jz2j2/
		�.z1; z2/
ı

is strictly plurisubharmonic on W .
Now consider the points in W of the form p D .z1; z2/ D ."ei log jz2j2 ; z2/ with

e��=2 � jz2j � e�=2. For these points one has that

@�.p/ D 	
.1 	 "/ei log jz2j2 ; 0



:

A straightforward computation shows that, at such points p � ."ei log jz2j2 ; z2/, the
Levi form L� of � calculated at vectors v D .v1; v2/ 2 C

2 equals (all the functions
are evaluated at the point p and we write � in place of ei log jz2j2)

L�
	
pI .v1; v2/


 D "ı�2.2 	 "/ı�2
n
.2 	 "/

�
	"2.2 	 "/@2z1Nz1h

C 2ı".1 	 "/Re
	
�@z1h


C ı"h

C ı.1 	 ı/ .1 	 "/2
2 	 " h

�
jv1j2

C 2w".2 	 "/Re
h		".2 	 "/@2z1Nz2h

C ı.1 	 "/@z2hC ı
i�

z2
h


v1 Nv2

i

C ı2.2 	 ı/
�
	.2 	 ı/@2z2Nz2hC 2ı

jz2j2 h
�
jv2j2

o
:

Next, we evaluate the above Levi form at vectors of the form .v1; v2/ D .u1; "u2/.
Making the obvious simplification, we see that the necessary condition in order for
� to be strictly plurisubharmonic is that and 0 < " < 1 and, for all .u1; u2/ 2 C

2,

�
	"2.2 	 "/@2z1Nz1hC 2ı".1 	 "/Re

	
�@z2h


C ı"h

C ı.1 	 ı/ .1 	 "/2
2 	 " h

�
ju1j2

C 2Re
h�

	".2 	 "/@2z1Nz2hC ı.1 	 "/@z2hC ı
i�

z2
h
�

u1 Nu2
i

C
�
	.2 	 "/@2z2Nz2hC 2ı

jz2j2 h
�
ju2j2 � 0 : (6.2.6.1)
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Since h 2 C1.W/ this inequality must hold also for " D 0 and .0; z2/ 2 A. Then
we have

�1
2
ı.1 	 ı/h

�
ju1j2 C 2Re

h	
ı�@z2hC ı

i�

z2
h


u1 Nu2

i

C
�
	.2 	 "/@2z2Nz2hC 2ı

jz2j2
�
ju2j2 � 0 : (6.2.6.2)

Next, we substitute for h the function Qh defined on C � R
C such that h.z1; z2/ D

Qh.z1; jz2j2/. Then

@z2h.0; z2/ D Nz2@t Qh.0; jz2j2/ and @2z2Nz2h.0; z2/ D jz2j2@2t Qh.0; jz2j2/C @t Qh.0; jz2j2/ :

Plugging these into (6.2.6.1) we then obtain the differential inequality for the
function Qh:

1

2
ı.1 	 ı/ Qhju1j2 C 2Re

h
ı�
	
@t QhC i

jz2j2
Qh
u1 Nu2

i

C
�
	2jz2j2@2t Qh 	 2@t QhC 2ı

jz2j2
Qh
�
ju2j2 � 0

for all .u1; u2/ 2 C
2, e��=2 � jz2j � e�=2 (and the function Qh being evaluated at the

point .0; jz2j2/). Now if we choose .u1; u2/ of the form .2ei� =jz2j; 1/ in such a way
that the second term in the above display becomes nonpositive, we obtain that the
function � is plurisubharmonic only if

ı.1 	 ı/
jz2j2

Qh 	 2ı	.@t Qh/2 C
Qh2

jz2j4

1=2 	 jz2j2@2t Qh 	 @t QhC ı

jz2j2
Qh � 0

which in turn gives

	 ı2 Qh 	 jz2j4@2t Qh 	 jz2j2@t Qh � 0 (6.2.6.3)

for all points .0; jz2j2/ with e��=2 � jz2j � e�=2.
We now set g.s/ D Qh.0; es/ for s 2 Œ	�;�
. Notice that jz2j2 D es and that

g0 D es@t Qh and g00 D es@t QhC e2s@2t Qh : (6.2.6.4)

From (6.2.6.2) we obtain the differential inequality

g00 C ı2g � 0 ;
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for s 2 Œ	�;�
, where g is a smooth strictly positive function. From the strict
positivity of g, it follows that, for all 0 < ı0 < ı, it must be that

g00 C ı02g < 0 ;

again for all s 2 Œ	�;�
. Setting Qg.s/ D g.s=ı0/ the differential inequality above
can be rewritten as

Qg00 C Qg < 0
for all s 2 Œ	�ı0; �ı0
. Finally, by translation (calling the new function g again),
i.e., setting g.s/ D Qg.s C �ı0/, we obtain that

g00 C g < 0 (6.2.6.5)

for a smooth strictly positive function g, for all s 2 Œ0; 2�ı0
.
We now claim that there exists a smooth strictly positive function ' such that

'00 C ' < 0 and '0 < 0 (6.2.6.6)

for s 2 Œ0; �ı0
. For notice that if g as above is such that g0.a/ < 0, then g0.s/ < 0
for s 2 Œa; 2�ı0
, while if instead g0.a/ � 0, then g0.s/ > 0 for s 2 Œ0; a/, since
g00 < 0 on Œ0; 2�ı0
. In this latter case, making the substitution s 7! 2�ı0 	 s that
preserves (6.2.6.6), we obtain a function with negative derivative on Œa; 2�ı0/. By
the arbitrariness of ı0 < ı we establish the claim.

Now, the argument at the end of the proof of Theorem 6 in [DIF1] shows that the
differential inequalities (6.2.6.3) above are possible only if �ı0 < �=2, i.e.,

ı0 <
�

2�
D � :

This proves the result.

6.3 Non-Smooth Versions of the Worm Domain

In order to perform certain analyses on W , some simplifications of the domain turn
out to be particularly useful.

In the first instance, one can simplify the expression of the defining function �
for W by taking � to be 1 minus the characteristic function of the interval Œ	�;�
.
This has the effect of truncating the two caps and destroying in part the smoothness
of the boundary. Precisely, we can define

W 0 D
n
.z1; z2/ 2 C

2 W ˇ̌z1 	 ei log jz2j2 ˇ̌2 < 1; ˇ̌ log jz2j2
ˇ̌
< �

o
:
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We remark that W 0 is a bounded pseudoconvex domain with boundary that is C1
except at points that satisfy

1. jz2j D e�=2 and jz1 	 e�i log jz2j2 j D 1.
2. jz2j D e��=2 and jz1 	 e�i log jz2j2 j D 1.

Of interest are also two non-smooth, unbounded worms. Here, in order to be
consistent with the results obtained in [KRP1], we change the notation a bit. (In
practice, we set � D ˇ 	 �=2.)

For ˇ > �=2 we define

Dˇ D
n
� 2 C

2 W Re
	
�1e

�i log j�2j2
 > 0; ˇ̌ log j�2j2
ˇ̌
< ˇ 	 �

2

o

and

D 0̌ D
n
z 2 C

2 W ˇ̌Im z1 	 log jz2j2
ˇ̌
<
�

2
; j log jz2j2j < ˇ 	 �

2

o
:

It should be noted that these latter two domains are biholomorphically equivalent
via the mapping

.z1; z2/ 3 D 0̌ 7! .ez1 ; z2/ 3 Dˇ :

Neither of these domains is bounded. Moreover, these domains are not smoothly
bounded. Each boundary is only Lipschitz, and, in particular, their boundaries are
Levi flat.

We notice in passing that the slices ofDˇ , for each fixed �2, are half planes in the
variable �1. Likewise the slices of D 0̌ , for each fixed �2, are strips in the variable �1.

The geometries of these domains are rather different from that of the smooth
worm W , which has smooth boundary, and all boundary points, except those on a
singular annulus .0; ei log jz2j2 / in the boundary, are strictly pseudoconvex. However,
our worm domain Dˇ is actually a model for the smoothly bounded W (see, for
instance, [BAR2]), and it can be expected that phenomena that are true onDˇ orD 0̌
will in fact hold on W as well. We will say more about this symbiotic relationship
below.

6.4 Irregularity of the Bergman Projection

We begin this section by discussing the proof of Barrett’s result Theorem 6.1.8 in
[BAR2]. Now let us describe these ideas in some detail. We begin with some of
Kiselman’s main ideas.

Let the Bergman space H D A2 be the collection of holomorphic functions
that are square integrable with respect to Lebesgue volume measure dV on a
fixed domain. Following Kiselman [KIS] and Barrett [BAR3], using the rotational
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invariance in the z2-variable, we decompose the Bergman space for the domains
Dˇ and D 0̌ as follows. Using the rotational invariance in z2 and elementary Fourier
series, each f 2 H can be written as

f D
1X

jD�1
fj ;

where each fj is holomorphic and satisfies fj .z1; ei� z2/ D eij�f .z1; z2/ for � real.
In fact, such an fj must have the form

fj .z1; z2/ D gj .z1; jz2j/zj2 ;

where gj is holomorphic in z1 and locally constant in z2.
Therefore

H D
M
j2Z

Hj ;

where

Hj D ˚
f 2 L2 W f is holomorphic and f .w1; e

i�w2/ D eij�f .w1;w2/
�
:

If K is the Bergman kernel for H and Kj the Bergman kernel for Hj , then we may
write

K D
1X

jD�1
Kj :

Notice that, by the invariance property of Hj , with z D .z1; z2/ and w D .w1;w2/,
we have that

Kj .z;w/ D Hj .z1;w1/z
j
2wj2 :

Our job, then, is to calculate each Hj and thereby each Kj . The first step of this
calculation is already done in [BAR3]. We outline the calculation here for the sake
of completeness.

Proposition 6.4.1. Let ˇ > �=2. Then

Hj .z1;w1/ D 1

2�

Z 1

�1

ei.z1�w1/��
�
� 	 jC1

2

�

sinh.��/ sinh
h
.2ˇ 	 �/

�
� 	 jC1

2

�i d� : (6.4.1.1)
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The articles [KIS] and [BAR2] calculate and analyze only the Bergman kernel for
H�1 (i.e., the Hilbert subspace with index j D 	1). This is attractive to do because
certain “resonances” cause cancellations that make the calculations tractable when
j D 	1. One of the main thrusts of the work [KRP1] is to perform the more difficult
calculations for all j and then to sum them over j .

We begin by following the calculations in [KIS,BAR3] in order to get our hands
on the Bergman kernels of the Hj . Let fj 2 Hj and fix w2. Then fj .w1;w2/ D
hj .w1/w

j
2 (where we of course take into account the local independence of hj from

w2). Now, writing w1 D xC iy, w2 D rei� , and then making the change of variables
log r2 D s, we have

kfj k2H D
Z
D0
ˇ

jhj .w1/j2jw2j2j dV.w/

D
Z 1

�1

Z
jy�log r2j<�

2

2�jhj .x C iy/j2
Z

j log r2j<ˇ� �
2

r2jC1 drdydx

D �

Z
R

Z
jy�sj<�

2

jhj .x C iy/j2
Z

jsj<ˇ� �
2

es.jC1/ dsdydx

D �

Z
jyj<ˇ; x2R

jhj .x C iy/j2
Z 1

�1
e.jC1/s��=2.y 	 s/�ˇ��=2.s/ dsdxdy

D
Z
Sˇ

jhj .w1/j2
�
��=2 � �e.jC1/. � /�ˇ��=2. � /

�
.y/ dxdy I (6.4.1.2)

here we have set

Sˇ D fx C iy 2 C W jyj < ˇg

and used the notation

�˛.y/ D
�
1 if jyj < ˛ ;
0 if jyj � ˛ :

For ˇ > �
2

, we now set

�j .y/ D
�
��=2 � �e.jC1/. � /�ˇ��=2. � /

�
.y/ :

So line (6.4.1.2) equals

Z
Sˇ

jhj .w1/j2�j .y/ dxdy :
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Thus we have shown that, if fj 2 Hj , fj D hj .w1/w
j
2 , then

kfj k2H D
Z
Sˇ

jhj .w1/j2�j .y/ dxdy :

Now let ' 2 A2.Sˇ; �j dA/. That is, ' is square integrable on Sˇ with respect to
the measure �j dA (here dA D dxdy is two-dimensional area measure). Note that
�j depends only on the single variable y. Let Q' denote the partial Fourier transform
of '.x C iy/ in the x-variable. Then (by standard Littlewood–Paley theory)

Q'.�; y/ D
Z
'.x C iy/e�ix� dx D e�y� Q'0.�/ ;

where '0.x/ D '.x C i0/. Therefore denoting by Bˇ D B
.j /

ˇ the Bergman kernel
for the strip Sˇ with respect to the weight �j and writing ! D s C i t and denoting
by � the variable dual to s, we have

Z
R

Q'0.�/ei�� d� D 2�'.�/ D 2�

Z
Sˇ

'.!/Bˇ.�; !/�j .Im!/ dA.!/

D
Z ˇ

�ˇ

Z
R

Q'.�; t/ QBˇ.�; .�; t//�j .t/ d�dt

D
Z
R

QBˇ.�; .�; 0//
Z ˇ

�ˇ
Q'0.�/e�2�t�j .t/ dt d� :

Notice that there is a factor of e��t from each of the Fourier transform functions in
the integrand.

This gives a formula for QBˇ:

QBˇ.�; .�; 0// D ei��R ˇ
�ˇ e�2t��j .t/ dt

D ei��

O�j .	2i�/
:

Amalgamating all our notation, and using the fact that the (Hermitian) diagonal in
C
2 is a set of determinacy, we find that

Bˇ.z;w/ D 1

2�

Z
R

ei.z�w/�

O�j .	2i�/
d� :

But of course .��=2/O.�/ D .ei��=2 	 e�i��=2/=� , so that

.��=2/ O .	2�i/ D 1

�
sinh.��/ :
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Furthermore,

�
e.jC1/s�ˇ� �

2
.s/
� O D sinh

	
.2ˇ 	 �/	� 	 jC1

2




� 	 jC1

2

:

Thus

O�j .	2i�/ D sinh.��/ sinh..2ˇ 	 �/.� 	 jC1
2
//

�.� 	 jC1
2
/

;

and

1

O�j .	2i�/
D

�
�
� 	 jC1

2

�

sinh.��/ sinh..2ˇ 	 �/.� 	 jC1
2
//
:

In conclusion,

Hj .z1;w1/ D 1

2�

Z 1

�1

	
ei.w1�z1/�



�
�
� 	 jC1

2

�

sinh.��/ sinh
�
.2ˇ 	 �/

�
� 	 jC1

2

�� d� ;

thus proving Proposition 6.4.1.
At this point we sketch the proof of the main result of Barrett in [BAR4]. Namely,

we show that the Bergman projection on the worm does not act continuously on the
Sobolev space W s .

Proof: The proof starts from the observation that the Bergman projection P on W
preserves each Hj . Therefore in order to show that P is not continuous on W s ,
for some s, it suffices to show that P fails to be continuous in this topology when
restricted to some Hj .

The first step is to calculate the asymptotic expression for the kernel when j D
	1. Recall that we are working on the non-smooth domain D 0̌ . Using the method
of contour integrals, it is not difficult to obtain that

K 0�1.z;w/ D 	
e��ˇ jz1�w1j C O.e��jRe z1�Re w1j/


 � .z2w2/�1

as jRe z1 	 Re w1j 	! C1, uniformly in all closed strips fjIm z1j; jIm w1j � �g,
with � > �b .

By applying the biholomorphic transformation between Dˇ andD 0̌ , one obtains
an asymptotic expression for the kernel K�1 relative to the domain Dˇ:

K�1.�; !/ D .j�1jj!1j/�1 �
� j!1j�ˇ

j�1j�ˇ C O.j!1j�ˇ=j�1j�ˇ /��
�

� .�2!2/�1 ;



6.5 Irregularity of the Bergman Kernel 205

with � > �ˇ , as j�1j 	 j!1j 	! 0C. The proof of these two assertions can be found
in [BAR4] (or see [CHS]).

The next step is a direct calculation to show thatK�1.�;w/ 62 W s.Dˇ/ for s � �ˇ .
This assertion is proved by using the characterization of the Sobolev norms for
holomorphic functions on a domain ˝: For 	1=2 < t < 1=2, m a nonnegative
integer, the norm

X
j˛j�m

��j�jt @˛z h
��
L2.˝/

is equivalent to the Hm�t -norm of the holomorphic function h. The proof of such a
characterization can be found in [LIG2].

Next, one notices that the reproducing kernel K�1.�;w/ can be written as the
projection of a radially symmetric smooth cutoff function �, translated at w. That is,
if we denote by P�1 the projection relative to the subspace H�1, then

K�1.�;w/ D P�1
	
�.� 	 w/



:

Therefore since K�1.�;w/ 62 W s.Dˇ/ for s � �ˇ , then P�1, and therefore PDˇ is
not continuous on W s.Dˇ/.

The final step of the proof is to transfer this negative result fromDˇ to W . This is
achieved by an exhaustion argument—see [BAR2]. We adapt this kind of argument
to obtain a negative result in the Lp-norm for the Bergman projection on the smooth
worm of Diederich and Fornæss. We refer the reader to the literature for all the
details.

6.5 Irregularity Properties of the Bergman Kernel

We now examine the boundary asymptotics for the Bergman kernel on the domains
Dˇ and D 0̌ and determine various irregularity properties of the corresponding
Bergman kernels.

Begin with the asymptotic formula in the discussion above of Barrett’s result.
We point out particularly that there are two kinds of behavior: one kind at the “finite
portion of the boundary” and the other one as jRe z1 	 Re w1j 	! C1.

These two different behaviors are expressed by the first and second terms in the
expansion. For the former type, we notice that the lead terms have expressions in
the denominator of products of two terms like

.i.z1 ˙ w1/C 2ˇ/2 ; .z2w2 	 e˙.ˇ��=2//2 ; and .z2w2 	 e�Œi.z1�w1/˙�
=2/2 :

These singularities are similar to the ones of a Bergman kernel of a domain in C
2

which is essentially a product domain. It is important to observe that the kernel
does not become singular only when z;w tend to the same point on the boundary.
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For instance, it becomes singular as .i.z1 ˙ w1/ C 2ˇ/ 	! 0, while there is no
restriction on the behavior of z2 and w2. We will be more detailed below in the case
of the domain Dˇ . For the case of this domain, we finally notice that the main term
at infinity, that is, when jRe z1 	 Re 1j 	! C1, behaves like e��ˇ jz1�w1j � .z2w2/�1.

Next, we consider the case of Dˇ . The mapping .z1; z2/ 2 D 0̌ 7! .�1; �2/ D
.ez1 ; z2/ 2 Dˇ sends the point at infinity (in z1) into the origin (in �1). Keeping into
account the Jacobian factor, when j�1j	j!1j 	! 0C, the kernel onDˇ is asymptotic
to

j!1j�ˇ�1

j�1j�ˇC1 � .�2!2/�1 :

Recall the inequalities that define Dˇ:

Dˇ D
n
� 2 C

2 W Re
	
�1e

�i log j�2j2
 > 0; ˇ̌ log j�2j2
ˇ̌
< ˇ 	 �

2

o
:

If we take �; ! 2 Dˇ and let !1 tend to 0, then clearly ! 	! @Dˇ and �1; �2; !2 are
unrestricted. Therefore KDˇ.�; !/ 62 C1.Dˇ/ for ! 2 f.0; !2/g, with j log j!2j2j <
ˇ 	 �=2.

Notice that this is in contrast, for instance, to the situation on the ball or, more
generally, on a strictly pseudoconvex domain. On either of those types of domains
˝, the kernel is known to be smooth on ˝ � ˝ n .� \ Œ@˝ � @˝
/. See [KER2]
and [KRA1, Chap. 1].

By the same token (by almost the same calculation), it is easy to conclude that
the Bergman projection on Dˇ cannot map functions in C1.Dˇ/ to functions in
C1.Dˇ/. This, of course, is the failure of Condition R on these domains.

In Sect. 6.1 we have seen that PW W C1.W/ 6	! C1.W/, that is, that W
does not satisfy Condition R. A philosophically related fact, due to Chen [CHE]
and Ligocka [LIG1] independently, is that the Bergman kernel of W cannot lie in
C1.W �W n�/ (where� is the boundary diagonal). In fact, in [CHE] it is shown
that this phenomenon is a consequence of the presence of a complex variety in the
boundary of W .

The proof of the general result of So-Chin Chen follows a classical paradigm for
establishing propagation of singularities for the @-Neumann problem and similar
phenomena.

Theorem 6.5.1. Let ˝ � C
n be a smoothly bounded, pseudoconvex domain with

n � 2. Assume that there is a complex variety V , of complex dimension at least 1,
in @˝. Then

K˝.z;w/ 62 C1.˝ �˝ n 4.@˝// ;

where 4.@˝/ D f.z; z/ W z 2 @˝g.
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Proof: Let p 2 V be a regular point. Let np be the unit outward normal vector
at p. Then there are small numbers ı; "0 > 0 such that w 	 "np 2 ˝ for all w 2
@˝ \ B.p; ı/ and all 0 < " < "0. Let d be an analytic disc in @˝ \ B.p; ı/ \ V .
We may assume that this disc is centered at p. In other words, d is the image of the
unit disc in the plane mapped into C

n with the origin going to p.
Seeking a contradiction, we assume that K˝.z;w/ 2 C1.˝ � ˝ n 4.@˝//.

Then we certainly have

sup
w2@d

jK˝.p;w/j � M < C1 (6.5.1.1)

for some positive, finite number M . On the other hand, we know (see [BLP]) that

lim
"�!0

K˝.p 	 "np; p 	 "np/ D C1 : (6.5.1.2)

By the maximum modulus principle, we then obtain

sup
w2@d"

jK˝.p 	 "np;w/j � K˝.p 	 "np; p 	 "np/ ;

where d" D d 	 "np � ˝. We conclude that

sup
w2@d

jK˝.p;w/j D lim
"�!0

sup
w2@d"

jK˝.p 	 "np;w/j D C1 :

This gives a contradiction, and the result is established.

6.6 The Kohn Projection Formula

In the 1960s, Kohn produced an elegant formula that relates the Bergman projection
to the @-Neumann problem. We refer the reader to [FOK] or [KRA4] for details of
this important topic. Here we only briefly review the key concepts.

In studying the @ operator, it is convenient to treat the second order, self-adjoint
operator given by

D @@
� C @

�
@ :

It is shown that this partial differential operator has a right inverse N , which is
known as the @-Neumann operator.

Let ˝ �� C
n be a fixed domain on which the equation @u D ˛ is always

solvable when ˛ is a @ closed .0; 1/ form (i.e., a domain of holomorphy—in other
words, a pseudoconvex domain). Let P W L2.˝/ ! A2.˝/ be the Bergman
projection. If u is any solution to @u D ˛, then w D w˛ D u 	 P u is the
unique solution that is orthogonal to holomorphic functions. Thus w is well defined,
independent of the choice of u. Define the mapping

T W ˛ 7! w˛:
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Then, for f 2 L2.˝/, it holds that

Pf D f 	 T .@f /: (6.6.1)

To see this, first notice that @Œf 	 T .@f /
 D @f 	 @f D 0; where all
derivatives are interpreted in the weak sense. Thus f 	 T .@f / is holomorphic.
Also f 	 Œf 	 T .@f /
 is orthogonal to holomorphic functions by design. This
establishes the identity (6.6.1). But we have a more useful way of expressing T W
namely, T D @

�
N . Thus we have derived the following important result:

P D I 	 @�
N@: (6.6.2)

This is the Kohn’s formula.
Formula (6.6.2) is particularly useful for studying Condition R. For if ˝ is

a strictly pseudoconvex domain, or a finite type domain in the sense of Kohn–
D’Angelo–Catlin, then it is known that N satisfies a regularity estimate. In the
strictly pseudoconvex case, the estimate is

kN˛kW sC1 � Ck˛kW s :

Here W s is the standard Sobolev space of order s (see [KRA4]). It immediately
follows from (6.6.2) that the Bergman projection P mapsW s toW s�2. And that is a
form of Condition R (we actually prove something stronger elsewhere in the book).
We conclude, then, that a biholomorphic mapping of smoothly bounded, finite type
domains extends to a diffeomorphism of the closures.

We can also learn something from applying formula (6.6.2) to the Dirac ı mass at
a point w of the domain. For the Bergman kernel K.z;w/ D P.ıw/. Thus according
to (6.6.2),

K.z;w/ D P.ıw/ D ıw 	 @�
N@ıw :

By the pseudolocality of N on a finite type domain, we may conclude that the
kernel is smooth—up to the boundary—away from w. (Here an operator T is said
to be pseudolocal if T ' is smooth wherever ' is smooth. Thus partial differential
operators are trivially pseudolocal. What is interesting, and nontrivial, is when an
integral operator is pseudolocal.)

6.7 Boundary Behavior of the Bergman Kernel

The earliest work on the boundary behavior of the Bergman kernel was done by S.
Bergman himself [BER2]. A more modern approach, based on estimates for the @-
Neumann problem, appears in [HOR1]. Hörmander’s results later were given some
technical refinements in [DIE1, DIE2]. Here we present the statements and proofs
of Hörmander’s results.
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We will see that the main tool used in the proof is a comparison technique. We
determine information about the Bergman kernel for the domain ˝ under study
by comparing that kernel with the kernel of another (nearby) domain for which the
kernel is more accessible. This is a very powerful idea and is used pervasively in this
field. Even Fefferman’s decisive result about the boundary behavior of the Bergman
kernel uses a (rather sophisticated) comparison technique.

6.7.1 Hörmander’s Result on Boundary Behavior

Theorem 6.7.1. Let ˝ � C
n be a bounded domain of holomorphy with defining

function given by

�.z/ D
� 	dist@˝.z/ if z 2 ˝

dist@˝.z/ if z 62 ˝ :

Assume that the operator @ W L2.0;0/.˝/ ! L20;1.˝/ has closed range. Let P be a
point of @˝ such that @˝ is C2 in a neighborhood of P . Also suppose that @˝ is
strictly pseudoconvex at P . Let k.P / be the product of the n	 1 eigenvalues of the
Levi form at P . Then

lim
˝3z!P

j�.z/jnC1 jK˝.z; z/j ! k.P / � nŠ

4�n
:

The proof will be broken up into a sequence of lemmas and will occupy most of
the rest of this section. At the end we shall comment on the Fefferman’s asymptotic
expansion and how it trumps the work of Bergman, Hörmander, and Diederich. We
note that, by the main theorem of [HOR1], the hypothesis of closedness of the @
operator is automatically fulfilled on a bounded domain of holomorphy.

Lemma 6.7.2. If ˝ is as in the theorem and ˝ 0 � ˝ is another domain, then

jK˝0.z; z/j � jK˝.z; z/j :

Proof: This is obvious from the characterization

jK˝.z; z/ D sup
u2A2˝

kuk
A2

D1

ju.z/j2
kuk2

A2

: (6.7.2.1)

Lemma 6.7.3. Let ˝ be a bounded, pseudoconvex domain. Let P 2 @˝ and
suppose that, for some neighborhood U of P , there is a holomorphic function u0
on ˝ 0 � ˝ \ U such that ju0j � 1 in ˝ 0 and ju0.z/j ! 1 when z ! P . We
also suppose that ju0.z/j has an upper bound less than 1 in ˝ 0 \ cU0 for some
neighborhood U0 of P with compact closure contained in U . Then we have



210 6 Additional Analytic Topics

lim
z!P

jK˝.z; z/j
jK˝0.z; z/j D 1 :

Remark 6.7.4. Certainly a holomorphic peaking function will suffice for the func-
tion u0 in this lemma. It is known (see [KRA1]) for example, on strictly pseudocon-
vex domains, that holomorphic peaking functions always exist.

Proof of Lemma 6.7.3. Let � be aC1 function with compact support inU which is
identically equal to 1 on U0. Assume that 0 � � � 1 everywhere. If u0 2 L2.0;0/.˝ 0/
and is holomorphic there, then (for an integer � to be specified later) we set

u D � � u0 � u�0 	 v :

Our goal is to choose v so that @u D 0 on ˝ 0. Thus we must solve the equation

@v D .@�/u0u�0 :

Of course the right-hand side is @-closed and supported in U \˝. We solve this @
problem on the domain ˝. Hörmander’s theorem in [HOR1] tells us that there will
be a solution v satisfying

Z
˝

jvj2 dV � C

Z
˝

ju0u�0j2 dV D C

Z
˝0\cU0

ju0u�0j2 dV (6.7.3.1)

because @� D 0 on U0.
If � > 0, then we have

Z
˝0

ju 	 u0u�0j2 dV � 2.C C 1/

Z
˝0\cU0

ju0u�0j2 dV � �2
Z
˝0

ju0j2 dV ;

provided that � is chosen so large that ju0j2� � �2=Œ2.C C 1/
 in ˝ 0 \ cU0. From
the definition of the kernel function in ˝ 0 and (6.7.3.1), we see now that for z 2 ˝ 0
we have

ju.z/ 	 u0.z/u0.z/� j2 � �2jK˝0.z; z/j
Z
˝0

ju0j2 dV :

Thus

ju.z/j � ju0.z/jju0.z/j� 	 �
�

jK˝0.z; z/j
Z
˝0

ju0j2 dV

�1=2
:
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Since the supremum in (6.7.2.1) is clearly attained, we can, for every z 2 ˝ 0, choose
u0 6� 0 so that

ju0.z/j2 D jK˝0.z; z/j
Z
˝0

ju0j2 dV :

For the corresponding function u, we then obtain the estimate

ju.z/j2 � jK˝0.z; z/j .ju0.z/j� 	 �/2
Z
˝0

ju0j2 dV ; (6.7.3.2)

as long as z 2 ˝ 0 and ju0.z/j� > �. Now the triangle inequality and (6.7.3.1) tell us
that Z

˝

juj2 dV � .1C �/2
Z
˝0

ju0j2 dV :

Together with (6.7.3.2), this last estimate implies that

jK˝.z; z/j � jK˝0.z; z/j � .ju0.z/j� 	 �/2 .1C �/�2 if z 2 ˝ 0 and ju0.z/j� > � :
Thus

lim inf
z!z0

jK˝.z; z/j
K˝0.z; z/j � .1 	 �/2.1C �/2

and, since � > 0 is arbitrary, this (together with the preceding lemma) proves the
current lemma.

This last lemma will enable us to reduce the proof of our main result to the study
of a special domain on which the kernel function is relatively easy to compute.

Lemma 6.7.5. Let E0 be the ellipsoid in C
n defined by

E0 D fz 2 C
n W a1jz1j2 C z2jz2j2 C � C anjznj2 < a0g

where a0; a1; a2; : : : are positive numbers. Then

jKE0.z; z/j D nŠ��na0 � a1 � � � � � an � .a0 	 a1jz1j2 	 a2jz2j2 	 � � � 	 anjznj2/�n�1 :

Proof: We may assume that a0 D 1. After a linear change of variables, we may
also suppose that a1 D a2 D � � � an D 1. Because of the unitary invariance of
the kernel K, we may let z D .0; 0; : : : ; 0; �/. If u is an element of A2.E0/, then a
unitary transformation � of the variables z1; z2; : : : ; zn�1 leavesE0, u.0; 0; : : : ; 0; �/,
and

R juj2 dV , and
R juj2 dV invariant. Let z0 D .z1; z2; : : : ; zn�1/. If we form

u1.z/ D
Z

u.�z0; zn/ d� ;
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where d� is normalized Haar measure on the unitary group, we then obtain a
function u1 2 A2.E0/ so that

u1.0; 0; : : : ; 0; �/ D u.0; 0; : : : ; 0; �/ :

By Minkowski’s inequality, we now see that
Z
E0

ju1j2 dV �
Z
E0

juj2 dV :

But u1 is invariant for unitary transformations of z1; z2; : : : ; zn�1 and therefore must
be a function of zn only. In determining the supremum in the proof of the first lemma,
we may therefore assume that u is a holomorphic function of zn for jznj < 1.

Now put

u.z/ D
1X
0

cj zjn :

Since the volume of the unit ball in R
2n�2 is �n�1=.n 	 1/Š, we find that

Z
E0

juj2 dV D �n�1

.n 	 1/Š
Z 2�

0

Z 1

0

ju.rei� j2r.1 	 r2/n�1 drd�

D �n�1

.n 	 1/Š
1X
0

jcj j22�
Z 1

0

r2jC1.1 	 r2/n�1 dr

D �n
1X
0

jcj j2j Š
.j C n/Š

:

By the Cauchy–Schwarz inequality, it follows now that

ju.0; 0; : : : ; 0; �/j2 � ��n
1X
0

j�j2j .j C n/Š

j Š

Z
E0

juj2 dV ;

where equality is attained for some u. Since the sum of the series is nŠ.1	j�j2/�n�1,
the lemma is now proved.

The following variant of the last lemma will be particularly useful in the proof of
our main result:

Lemma 6.7.6. Let ajk (j; k D 1; : : : ; n) be a positive definite Hermitian symmetric
matrix. Set

F0 D
8<
:z 2 C

n W Im zn >
nX

j;kD1
ajkzj zk

9=
; :
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Then

jKF0.z; z/j D �nŠ4�1��n
0
@Im zn 	

nX
j;kD1

ajkzj zk

1
A

�n�1

;

where � D det.ajk/n�1
j;kD1.

Proof: By a unitary transformation of the variables z1; z2; : : : ; zn�1, we may reduce
the matrix .ajk/n�1

j;kD1 to diagonal form; and the statement of the theorem remains
invariant. Assuming this reduction to have been made, we can introduce new
variables

wj D aj C znanj
ajj

; j D 1; 2 : : : ; n 	 1

and wn D zn. The determinant of this transformation of variables is equal to 1, so
again the statement of the theorem is invariant. So we may assume that the entire
matrix .ajk/ has diagonal form. If we write

Im zn 	 annjznj2 D 1

4ann
	 ann

ˇ̌
ˇ̌zn 	 i

2ann

ˇ̌
ˇ̌2 ;

then the lemma now follows from Lemma 6.7.3.

Proof of Theorem 6.7.1. It is a standard fact (see Lemma 3.3.3 of [HOR1]) that
there is a real-valued function  2 C2 which is strictly plurisubharmonic in a
neighborhood of P so that ˝ is defined by the equation  < 0 and grad 
is the exterior unit normal to @˝ at P . We choose local coordinates at P so
that P is the origin and the differentials dzj are orthonormal at P . Thus we
have that the Riemannian element of integration has density 1 with respect to the
Lebesgue measure in the coordinate space. We further choose our coordinates so
that  .z/ C Im zn D O.jzj2/ at P . By the Taylor’s formula, ˝ is thus defined in a
neighborhood of P by an inequality of the form

Im zn >
nX

j;kD1

@2 .0/

@zj @zk
zj zk C ReA.z/C o.jzj2/ ;

where A is an analytic, homogeneous, second-degree polynomial. If we replace the
coordinate zn by zn 	 iA.z/, the differential at P is not affected. So we may assume
without loss of generality that A D 0 from the outset. Put ajk D @2 .0/=@zj @zk ,
which is a Hermitian symmetric, positive definite matrix at P .

For any � > 0, we set

˝� D
8<
:z W Im zn >

nX
j;kD1

ajkzj zk C �jaj2
9=
; :



214 6 Additional Analytic Topics

Then

˝ı
� � ˝� \ fz W jzj < ıg

is contained in ˝ if ı is sufficiently small. We now see, using Lemma 6.7.2, that

jK˝.z; z/j � e�jK˝ı
�
.z; z/j :

If we let z ! 0 so that Im zn=jaj has a positive lower bound, then it follows from
Lemmas 6.7.3 and 6.7.6 applied to ˝ı

� and ˝� that

lim sup
z!0

.Im zn/
nC1jK˝.z; z/j � e� lim sup

z!0

.Im zn/
nC1jK˝ı

�
.z; z/j

D e� lim sup
z!0

.Im zn/
nC1jK˝�.z; z/j

D nŠ4�1��ne�det.ajk C �ıjk/
n�1
j;kD1 :

Since � is arbitrary, this last proves (with the notation from our main theorem) that

lim sup
z!P

j�.z/jnC1jK˝.z; z/j � k.P /nŠ

4�n
; (6.7.1.1)

assuming that z approaches P inside a small cone in the coordinate space around
the normal to @˝ at P . But we can see that in fact the result is valid uniformly in
P , so it remains true for arbitrary approach to P .

Let � be positive but smaller than the least eigenvalue of the matrix .ajk/. For
sufficiently small ı > 0, we have

˝ı D fz W z 2 ˝; jzj < ıg � ˝�� :

Hence, Lemma 6.7.3 can be applied with U D fz W jzj < ıg and u0.z/ D eizn. From
Lemma 6.7.3 and the monotonocity in Lemma 6.5.2, we then find, for ı sufficiently
small, that

lim sup
z!P

.Im zn/
nC1jK˝.z; z/j D lim sup

z!P

.Im zn/
nC1jK˝ı.z; z/j

� e�� lim sup
z!P

.Im zn/
nC1jK˝�� .z; z/j

when z ! P and remains in a small cone about the normal to @˝. Arguing exactly
as in the proof of (6.5.1.1), we conclude now that

lim inf
z!P

j�.z/jnC1jK˝.z; z/j � k.P /nŠ

4�n
:

Details are left to the reader. And that completes the proof.
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6.7.2 The Fefferman’s Asymptotic Expansion

The 1974 result of Fefferman [FEF1] subsumes all the earlier work. For Fefferman
shows that, near a boundary point of a smooth, strictly pseudoconvex domain,2 the
Bergman kernel for ˝ can be written (in suitable local coordinates) as

K˝.z;w/ D KB.z;w/C E.z;w/ :

Here KB is the Bergman kernel for the unit ball, and E is an error term which is of
measurably lower order thanKB . So we see that this theorem is much more explicit
than Theorem 6.5.1 that we proved above, and it is also valid off the diagonal.

The Fefferman’s argument is quite lengthy and complicated, and we cannot
present it here. What we can do, however, is to explicate the approximation part
of his reasoning. This is a nice piece of logic and shows how to approximate a
strictly pseudoconvex point by (the image of) the unit ball.

We shall exploit the following fact:

FACT: Given p 2 @˝ strictly pseudoconvex, we can find a region Q̋ internally tangent to
@˝ to third order at p and an explicit biholomorphic change of coordinates F mapping a
neighborhood of p in @ Q̋ to a neighborhood of F.p/ in the boundary of the unit ball. Of
course we can then pull back the Bergman kernel from the unit ball to obtain an explicit
formula for the kernel K Q̋ of Q̋ .

Now we will give a more formal enunciation of this fact and provide a proof.

Proposition 6.7.7. Let p 2 @˝ be a strictly pseudoconvex point. Then there is a
neighborhood V of p with the following property: For any point Q 2 V there is a
biholomorphic mapping �Q sending V to a neighborhood of the origin, sending Q
to the point . .Q/; 0; : : : ; 0/, and sending ˝ \ V to a region of the form

Re �1 D j�0j2 	 p4.�0; Im �1/C .fifth- and higher-order terms in �0; �0
; Im �1/

with .�1; �0/ 2 �w.V /. Here p4.�0; Im �1/ is a real-valued, fourth-order polynomial
in �0; �0

; Im �1 satisfying p4.�0; Im �1/ � C.j�0j4 C jIm �1j4/. Furthermore, we can
make �Q. � / depend smoothly on P 2 V .

Here we may think (refer to the FACT above) of fRe �1 D j�0j2g as the boundary
of Q̋ .

Proof: Let q be the point of @˝ that is closest to Q. Then Q 	 q is normal to @˝.
After a suitable translation and rotation of Cn, we may suppose that q D 0 and that

2At the time that Fefferman wrote his paper, it really was necessary to assume that the entire domain
was strictly pseudoconvex in order to get certain global estimates for the @-Neumann problem.
However, more recent results of Catlin [CAT1, CAT2] and others show that one need only assume
that the boundary is strictly pseudoconvex near the boundary point in question. The more global
hypotheses can be something considerably weaker—like finite type.
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the tangent plane to @˝ at q is fz W Re z1 D 0g. In particular, in the new coordinate
system, we have Q D .�; 0; : : : ; 0/ with � real and positive. In the complex part of
the tangent space, specified by fz W z1 D 0g, make a linear change of coordinates
so that the Levi form at Q becomes the identity matrix. As a result, we have a new
coordinate system, .z1; z0/, in which Q D .�; 0/ and @˝ takes the form

Re z1 D Re

8<
:a.i Im z1/

2 C
nX

jD2
bj � .iIm z1/ � zj C

nX
j;kD2

cjkzj zk

9=
;

Cjz0j2 C .third- and higher-order terms/ :

We can make the coefficient a real. Here jz0j2 appears as the Levi form .z0; z0/.
If we set

�1 D z1 	 az21 	
nX

jD2
bj z1zj 	

nX
j;kD2

cjkzj zk ;

�0 D z0 ;

then, in the new .�1; �
0/ coordinate system, @˝ takes the form

Re �1 D j�0j2 C .third and higher terms/ ; (6.7.7.1)

andQ still has the form .�; 0/ for � real. If we write out the most general real-valued
homogeneous third-degree polynomial in Im �1, �0, �0

, then we find that (6.7.7.1) is
equivalent to

Re �1 D j�0j2 C Re

� nX
j;k;`D2

ajk`�j �k�` C
nX

j;k;`D2
bjk`�j �k�`

nX
j;kD2

cjk.iIm �1/�j �k

C
nX

j;ikD2
djk.iIm �1/�j �k

nX
jD2

ej .iIm �1/
2�j C f � .iIm �1/

3

�
; (6.7.7.2)

where the as, bs, cs, d s, es, and f s are complex numbers. We may take f to be
purely imaginary. In the new coordinates then

z1 D �1 	 f �31 	
nX

jD2
ej �

2
1�j 	

nX
j;kD2

cjk�1�j �k 	
nX

j;k;`D2
ajk`�j �k�` ;

zr D �r C 1

2

nX
j;kD2

bjkr�j �k C 1

2

nX
jD2

djr�1�j ;

the surface (6.7.7.2) is transformed to Re z1 D jz0j2C (fourth and higher r-order
terms), while Q is mapped to .� C if �3; 0/.
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The rest of the proof depends on the following claim:

Claim: There is a linear fractional transformation of the Siegel upper half-space
f.z1; z0/ W Im z1 > jz0j2g taking 0 to 0 and taking .� C if �3; 0/ to .�; 0/. Moreover,
the transformation is biholomorphic in a fixed neighborhood of .0; 0/.

To see this, it is enough to check the case of the upper half plane in

C
1 D fz D .z1; z

0/ W z0 D 0g :

For, because of the explicit formulas for linear fractional transformations of the
Siegel upper half-space, we see that every linear fractional transformation of the
upper half plane to itself extends to a linear fractional transformation of the full
Siegel domain to itself. Moreover, the property of being biholomorphic in a fixed
neighborhood of 0 is preserved. The easy one-dimensional case of the claim is left
for the interested reader.

Therefore we can make a holomorphic change of coordinates transforming @˝
to the surface

Re �1 D j�0j2 	 .fourth-order terms/C .fifth- and higher-order terms/ : (6.7.7.3)

It remains to show that the fourth-order terms can be made positive. However, the
reader may easily check that the form (6.7.7.3) of the surface is preserved, while the
fourth-order terms are forced to be nonnegative if we simply make the change of
coordinates

z0 D �0 C C�1�
0

z1 D �1 	 C�41 ;

for C > 0 large enough. The reader may check that all the above changes of
coordinates depend smoothly on Q.

So we see quite explicitly with this proposition that a strictly pseudoconvex point
has defining function which (after suitable modifications of the local coordinates)
agrees with the ball up to the fourth order. This result is tricky but elementary. It is
noteworthy that it is a decisive improvement over earlier results of this type (see, for
instance, [HOR1]). Now we proceed to the guts of the approximation argument.

Fix a domain ˝ and a point P in the boundary which is strictly pseudoconvex.
This means that the boundary near P is C2 and that the Levi form at P is positive
definite. Of course an obvious implication is that boundary points near to P are also
strictly pseudoconvex. Now we consider A2.˝/ and the orthogonal space A2.˝/?.
For a fixed point w 2 ˝, the Dirac mass ıw breaks up uniquely into A2 and .A2/?
components by the equation

ıw D K˝. � ;w/C 	
ıw 	K˝. � ;w/
 : (6.7.8)
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We approximate the Bergman kernel K˝ by producing an explicit K0 2 A2 and
KC 2 .A2/? which add up to a small perturbation of ıw. Let p be the point of
@˝ which is nearest to w. We apply Proposition 6.7.7, setting K0. � / D K Q̋ . � ;w/,
QKC. � / D ıw 	 K Q̋ . � ;w/ on Q̋ . We have K0 2 A2. Q̋ /, QKC 2 .A2Q̋ /

?, and ıw D
K0 C QKC on Q̋ , so that ıw D K0� Q̋ C QKC� Q̋ on ˝. Clearly, since QKC 2 .A2Q̋ /?
and Q̋ � ˝, we know that KC D QKC� Q̋ 2 .A2˝/?. Furthermore, from the explicit
formula for K Q̋ , it follows immediately that K0 continues analytically from Q̋ to
all of˝. (For fixed w in the unit ball, .1	 z �w/�.nC1/ continues analytically beyond
the unit sphere.) Thus we may write

ıw CK0�˝n Q̋ D K0 CKC (6.7.9)

on ˝, with K0 2 A2˝ and KC 2 .A2˝/
? given by explicit formulas in terms of

.z;w/.
In a sense that can be made precise, the term K0�˝n Q̋ on the left-hand side is

small, since ˝ n Q̋ is such a thin subset of ˝ (recall that @ Q̋ is highly tangent to
@˝). To make this idea precise and quantitative, we associate to each kernel A.z;w/
on ˝ �˝ the operator Af .z/ D R

˝
A.z;w/f .w/ dV.w/ on L2.˝/A. Thus (6.7.9)

becomes an operator equation

I C E D K0 C KC ;

where K 0, K C, E are given by kernels with explicit formulas and K0f 2 A2.˝/,
KCf 2 .A2˝/? for all f 2 L2.˝/. The thinness of ˝ n Q̋ shows that E has small
norm as an operator on L2.˝/, so that for f 2 L2.˝/,

f D .I C E/.I C E/�1f
D .K0 	 K0E C K0E2 	 � � � /f C .KC 	 KCE C � � � /f
� F CG

with F 2 A2˝ and G 2 .A2˝/
?. Comparing this result with (6.7.8), we see that the

Bergman kernel for ˝ must be given by the operator equation

P˝ D K0 	 K0E C K0E2 	 � � � ; (6.7.10)

the series converging in the norm topology of operators on L2.˝/. Note that P˝

is the Bergman projection on ˝. We can obtain an asymptotic expansion for the
Bergman kernel itself by applying both sides of this last operator equation to the
Dirac delta mass. It is actually rather difficult to evaluate the right-hand sides of
(6.7.10). Fefferman needs to develop an entire calculus of integral operators in
order to do it. We cannot provide the details here but instead refer the reader to
[FEF1, Part I]. We note that a consequence of these calculations (and this should be
compared to the result of Hörmander discussed in the earlier part of this section) is
that
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K˝.z; z/ D ˚.z/ı�.nC1/
˝ .z/C Q̊ .z/ log ı˝.z/

for z near @˝. Here ˚; Q̊ 2 C1.˝/, ı˝.z/ is the distance of z to @˝ and ˚.z/ ¤ 0

for z 2 @˝. This is in fact the corollary on page 45 of [FEF1].
It is worth noting here that Boutet de Monvel and Sjöstrand [BOS] show

(Corollary 1.7) that, for the Szegő kernel,

K˝.z;w/ D ˚.z;w/ı�.nC1/
˝ .z;w/C Q̊ .z;w/ log ı˝.z;w/

for some ˚; Q̊ 2 C1.˝ � ˝/. They are then able to relate their formula to
Fefferman’s.

A word of explanation is needed for our last statement. Where did the logarithmic
term come from? This was one of the dramatic results of the Fefferman’s work—
that the Bergman kernel of a strictly pseudoconvex domain can (at least in principle)
contain a logarithmic term. And in fact Fefferman provides in his paper an
explicit example of domain for which the logarithmic term actually occurs (see
Example 6.7.11 below).

It is a noted conjecture of Ramadanov (see [RAM2]) that a strongly pseudocon-
vex domain with no logarithmic term for the Bergman kernel asymptotic expansion
at any boundary point must be spherical. Dan Burns (unpublished) in fact proved
such a result. Boutet de Monvel [BOU] in dimension two and Robin Graham
[GRA3] in general gave rigorous proofs of the result. See also the work of Hirachi
[HIR1]. There are unbounded domains and also roughly bounded domains on which
the analogue of this result for the Szegő is known to fail—see [HIR2].

The logarithmic term arises in the Fefferman’s calculations because he is
analyzing certain integral expressions—which are in effect negative powers of a
nonisotropic distance function—using integration by parts. When the power of the
nonisotropic distance is 	1, then the next integration gives rise to a log term.

One of the nice features of the work of Boutet de Monvel and Sjőstrand is that
they derive their asymptotic expansion for the Szegő kernel in a rather natural
fashion from the explicit formula on the ball using the theory of Fourier integral
operators (see [HOR5]). From this study they obtained the formula (see Theorem 1.5
in [BOS])

K.z; �/ D
Z 1

0

eiı˝.z;w/b.z;w; t / dt ;

where b 2 C1.˝;˝;RC/.
We conclude this section with a presentation of the Fefferman’s example of a

domain whose Bergman kernel has a logarithmic term. We will exploit this form of
the asymptotic expansion:

K˝.z;w/ D C jgradı˝.w/j2detL.w/X�.nC1/.z;w/C QK.z;w/ ;
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where QK is an admissible kernel of weight � n 	 1. Here L is the Levi form. Also
“weight” is a concept that Fefferman introduces as part of his integral calculus. We
can safely take it for granted.

Example 6.7.11. Let ˝ be the connected component of

f.z1; z2/ 2 C
2 W jz1j2 C jz2j2 	 cjz2j8 < 1g

containing the origin, where c is small and positive. Note that this ˝ is highly
tangential to the unit ball B at the point .1; 0/. Also B � ˝. Now set

 .w/ D 1 	 jw1j2 	 jw2j2 C cjw3j8

and w0 D .�; 0/ with 0 < � < 1. Now the above formulation of the asymptotic
expansion for the Bergman kernel tells us that

K˝.z;w
0// D '0.w

0/.1 	 �z1/
�3 C

MX
jD1

'j .z;w
0/.1 	 �z1/

�mj

C Q'.z;w0/ log.1 	 �z1/CO.1/ ; (6.7.11.1)

with '0.w0/ ¤ 0 and weight.'j / 	 mj � 	5=2. We shall show that
limt!1� Q'.w0;w0/ ¤ 0. To do so, we apply the reproducing property of K˝ to
the anti-holomorphic function F.w/ D KB.w0;w/ D c1.1 	 �w1/�3 to obtain

c1.1 	 �2/�3 D F.w0/

D
Z
˝

F.z/K˝.z;w
0/ dV.z/

D
Z
˝

c1.1 	 �z1/
�3K˝.z;w

0/ dV.z/

D
Z
B

c1.1 	 �z1/
�3K˝.z;w

0/ dV.z/

C
Z
˝nB

c1.1 	 �z1/
�3K˝.z;w

0/ dV.z/

D K˝.w
0;w0/C

Z
˝nB

c1.1 	 �z1/
�3K˝.z;w

0/ dV.z/ (6.7.11.2)

(since c1.1 	 �z1/�3 D KB.w0; z/ and K˝. � ;w0/ is holomorphic on B � ˝).
Substituting (6.7.11.1) into (6.7.11.2), we find that
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c1.1 	 �2/�3 	 '0.w0/.1 	 �2/�3 	
MX
jD1

'j .w
0;w0/.1 	 �2/�mj

	 Q'.w0;w0/ log.1 	 �2/CO.1/

D c1'0.w
0/

Z
˝nB

j1 	 �z1j�6 dV.z/

Cc1
�Z

˝nB
.1 	 �z1/

�3
� MX
jD1

'j .z;w
0/ � .1 	 �z1/

�mj

C Q'.z;w0/ log.1 	 �z1/CO.1/

�
dV.z/

�

D c1'0.w
0/

Z
˝nB

j1 	 �z1j�6 dV.z/CO.1/

� log.1 	 �2/ as � ! 1� :

We see immediately that lim�!1� Q'.w0;w0/ could not be zero. Therefore the term
Q'.z/ is really present in K˝.z; z/.

We conclude this section by noting that Fefferman developed his ideas further
by formulating a program for studying the geometry and analysis of strictly
pseudoconvex domains. The main idea is to consider the Bergman and Szegő kernels
as analogues of the heat kernel of a Riemannian manifold. In Riemannian geometry,
the coefficients of the asymptotic expansion of the heat kernel can be expressed in
terms of the curvature of the metric. Integrating the coefficients, one may obtain
index theorems in various settings. See [BEG, HIR3] for some of the details.

We also mention that, in his famous problem list, Yau [YAU] raises the question
of classifying pseudoconvex domains whose Bergman metrics are Kähler–Einstein.
Cheng [CHENG] conjectured that, if the Bergman metric of a strictly pseudoconvex
domain is Kähler–Einstein, then the domain is biholomorphic to the ball. This
conjecture was proved by Fu–Wong [FUW] in the case of a simply connected,
strictly pseudoconvex domain with smooth boundary.

6.8 The Bergman Kernel for a Sobolev Space

We may define the Bergman kernel for the Sobolev space W 1 and it appears to be
(up to a bounded error term)

1

�
log.1 	 z�/ :

Specifically, set 'j .�/ D �j . We calculate that
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ZZ

D

j'j .�/j2 dA D
ZZ

D

j�j j2 dA D �

j C 1

and
ZZ

D

j'0
j .�/j2 dA D

ZZ

D

jj�j�1j2 dA D j� :

Thus

k'j kW 1 D p
� �
s
j 2 C j C 1

j C 1
:

Thus the full Bergman kernel for W 1 is given by

1X
jD0

1

�
� jC1
j 2CjC1 �zj �j D 1

�
C

1X
jD1

1

�
� jC1
j 2CjC1 �zj �j D 1

�
C

1X
jD1

1

�
� 1
j

�zj �jCE ;

where E is an error term which is bounded and has one bounded derivative. So E is
negligible from the point of view of determining where the kernel has singularities
(i.e., where it blows up).

We look at

1

�
C 1

�

1X
jD1

1

j
˛j D 1

�
C 1

�

1X
jD1

Z
˛j�1

D 1

�
C 1

�

Z 1X
jD1

˛j�1

D 1

�
C 1

�

Z
1

˛

1X
jD1

˛j

D 1

�
C 1

�

Z
1

˛

2
4 1X
jD0

˛j 	 1
3
5

D 1

�
C 1

�

Z
1

˛

�
1

1 	 ˛ 	 1
�

D 1

�
C 1

�

Z
1

1 	 ˛
D 1

�
	 1

�
log.1 	 ˛/ :
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Thus the Bergman kernel for the order 1 Sobolev space is given by

K.z; �/ D 1

�
	 1

�
log.1 	 z�/ :

Also the kernel for the space generated just by the monomials with even index
seems to be given by (up to a bounded error term)

1

�

�
log.z�/C 1

2
log.1 	 z�/ 	 1

2
log.1C z�/

�
:

To see this, we look at

1X
jD0

1

�
� 2j C 1

.2j /2 C 2j C 1
z2j �

2j D 1

�
C 1

�

1X
jD1

1

2j
z2j �

2j C F :

Here, as in the first calculation, F is a bounded term with one bounded derivative.
So it is negligible from the point of view of our calculation.

Thus we wish to calculate

1

�
C 1

�

1X
jD1

1

2j
˛2j D 1

�
C 1

�

1X
jD1

Z
˛2j�1

D 1

�
C 1

�

Z
1

˛

1X
jD1

˛2j

D 1

�
C 1

�

Z
1

˛

2
4 1X
jD0

˛2j 	 1
3
5

D 1

�
C 1

�

Z
1

˛

�
1

1 	 ˛2 	 1
�

D 1

�
C 1

�

Z
˛

1 	 ˛2

D 1

�
	 1

2�
log.1 	 ˛2/ :

In conclusion, the Bergman kernel for the order 1 Sobolev space using only the basis
elements with even index is

K 0.z; �/ D 1

�
	 1

2�
log.1 	 z � �/ 	 1

2�
log.1C z � �/ :

In short, there are singularities as z and � tend to the same disc boundary point and
also as z and � tend to antipodal disc boundary points.
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6.9 Regularity of the Dirichlet Problem on a Smoothly
Bounded Domain and Conformal Mapping

We begin by giving a precise definition of a domain “with smooth boundary.”

Definition 6.9.1. Let U � C be a bounded domain. We say that U has smooth
boundary if the boundary consists of finitely many curves and each of these is
locally the graph of a C1 function.

In practice it is more convenient to have a different definition of domain with a
smooth boundary. A function � is called a defining function for U if � is defined in
a neighborhood W of @U; r� 6D 0 on @U; and W \ U D fz 2 W W �.z/ < 0g:
Now we say that U has smooth (or Ck) boundary if U has a defining function �
that is smooth (or Ck). Yet a third definition of smooth boundary is that it consists
of finitely many curves 	j ; each of which is the trace of a a smooth curve r.t/ with
nonvanishing gradient. We invite the reader to verify that these three definitions are
equivalent.

Our motivating question for the present section is as follows:

Let ˝ 
 C be a bounded domain with smooth boundary. Assume that f 2 �˛.@˝/: If
u 2 C.˝/ satisfies (i) u is harmonic on ˝ and (ii) u

ˇ̌
@˝

D f; then does it follow that
u 2 �˛.˝/‹

Here �˛ is the usual Lipschitz space (see [KRA12]). Here is a scheme for
answering this question:

Step 1: Suppose at first that U is bounded and simply connected.
Step 2: By the Riemann mapping theorem, there is a conformal mapping � W
U ! D: Here D is the unit disc. We would like to reduce our problem to the
Dirichlet problem on D for the data f ı ��1:

In order to carry out this program, we need to know that � extends smoothly to the
boundary. It is a classical result of Carathéodory [CAR] that, if a simply connected
domain U has boundary consisting of a Jordan curve, then any conformal map of
the domain to the disc extends univalently and bicontinuously to the boundary. It is
less well known that Painlevé, in his thesis [PAI], proved that when U has smooth
boundary, then the conformal mapping extends smoothly to the boundary. In fact
Painlevé’s result long precedes that of Carathéodory.

We shall present here a modern approach to smoothness to the boundary for
conformal mappings. These ideas come from [KER1]. See also [BEK] for a self-
contained approach to these matters. Our purpose here is to tie the smoothness-to-
the-boundary issue for mappings directly to the regularity theory of the Dirichlet
problem for the Laplacian.

Let W be a collared neighborhood of @U: Set @U 0 D @W \ U and let @D0 D
�.@U 0/: Define B to be the region bounded by @D and @D0: We solve the Dirichlet
problem on B with boundary data
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f .�/ D
�
1 if � 2 @D
0 if � 2 @D0

Call the solution u:
Consider v � u ı � W U ! R: Then of course v is still harmonic. By the

Carathéodory’s theorem, v extends to @˝; @˝ 0; and

v D
�
1 if � 2 @U
0 if � 2 @U 0 :

Suppose that we knew that solutions of the Dirichlet problem on a smoothly
bounded domain with C1 data are in fact C1 on the closure of the domain. Then,
if we consider a first-order derivative D of v, we obtain

jDvj D jD.u ı �/j D jruj jr�j � C:

It follows that

jr�j � C

jruj : (6.9.2)

This will prove to be a useful estimate once we take advantage of the following:

Lemma 6.9.3 (Hopf). Let ˝ �� R
N have C2 boundary. Let u 2 C.˝/ with

u harmonic and nonconstant on ˝: Let P 2 ˝ and assume that u takes a local
minimum at P: Then

@u

@�
.P / < 0:

Proof: Suppose without loss of generality that u > 0 on˝ near P and that u.P / D
0: Let BR be a ball that is internally tangent to ˝ at P: We may assume that the
center of this ball is at the origin and that P has coordinates .R; 0; : : : ; 0/: Then, by
Harnack’s inequality (see [GRK12]), we have for 0 < r < R that

u.r; 0; : : : ; 0/ � c � R
2 	 r2

R2 C r2

hence

u.r; 0; : : : ; 0/ 	 u.R; 0; : : : ; 0/

r 	R � 	c0 < 0:

Therefore

@u

@�
.P / � 	c0 < 0:

This is the desired result.
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Now let us return to the u from the Dirichlet problem that we considered prior to
line (6.9.2). Hopf’s lemma tells us that jruj � c0 > 0 near @D: Thus from Corollary
6.9.2, we conclude that

jr�j � C: (6.9.4)

Thus we have bounds on the first derivatives of �:
To control the second derivatives, we calculate that

C � jr2vj D jr.rv/j D jr.r.u ı �//j
D jr.ru.�/ � r�/j D j	r2u � Œr�
2
C 	ru � r2�


j:
Here the reader should think of r as representing a generic first derivative and r2 a
generic second derivative. We conclude that

jruj jr2�j � C C jr2uj j.r�/2j � C 0:

Hence, (again using Hopf’s lemma)

jr2�j � C

jruj � C 00:

In the same fashion, we may prove that jrk�j � Ck; any k 2 f1; 2; : : : g: This
means (use the fundamental theorem of calculus) that � 2 C1.˝/:

We have arrived at the following situation: Smoothness to the boundary of
conformal maps implies regularity of the Dirichlet problem on a smoothly bounded
domain. Conversely, regularity of the Dirichlet problem can be used, together with
Hopf’s lemma, to prove the smoothness to the boundary of conformal mappings.
We must find a way out of this impasse.

Our solution to the problem posed in the last paragraph will be to study the
Dirichlet problem for a more general class of operators that is invariant under smooth
changes of coordinates. We will study these operators by (1) localizing the problem
and (2) mapping the smooth domain under a diffeomorphism to an upper half-space.
It will turn out that elliptic operators are invariant under these operations. One can
then (we shall not actually do this) use the calculus of pseudodifferential operators
to prove local boundary regularity for elliptic operators.

There is an important point implicit in our discussion that deserves to be brought
into the foreground. The Laplacian is invariant under conformal transformations
(exercise). This observation was useful in setting up the discussion in the present
section. But it turned out to be a point of view that is too narrow: We found ourselves
in a situation of circular reasoning. We shall thus expand to a wider universe in
which our operators are invariant under diffeomorphisms. This type of invariance
will give us more flexibility and more power. See [KRA4, Chap. 3] for background
to this discussion.
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Let us conclude this section by exploring how the Laplacian behaves under a
diffeomorphic change of coordinates. For simplicity we restrict attention to R

2 with
coordinates .x; y/: Let

�.x; y/ D .�1.x; y/; �2.x; y// � .x0; y0/

be a diffeomorphism of R2: Let

� D @2

@x2
C @2

@y2
:

In .x0; y0/ coordinates, the operator � becomes

��.�/ D jr�1j2 @
2

@x02 C jr�2j2 @
2

@y02

C 2

�
@x0

@x

@y0

@x
C @x0

@y

@y0

@y

�
@2

@x@y
C .first-order terms/:

In an effort to see what the new operator has in common with the old one, we
introduce the notation

D D
X

a˛
@

@x˛
;

where

@

@x˛
D @

@x
˛1
1

@

@x
˛2
2

� � � @

@x
˛n
n

is a differential monomial. Its “symbol” is defined to be

�.D/ D
X

a˛.x/�
˛ ; �˛ D �

˛1
1 �

˛2
2 � � � �˛nn :

The symbol of the Laplacian � D @2

@x2
C @2

@y2
is

�.�/ D �21 C �22 :

Now associate to �.�/ a matrix A� D .aij /1�i;j�2; where aij D aij .x/ is the
coefficient of �i �j in the symbol. Thus

A� D
�
1 0

0 1

�
:

The symbol of the transformed Laplacian (in the new coordinates) is
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�.��.�// D jr�1j2�21 C jr�2j2�22
C 2

�
@x0

@x

@y0

@y
C @x0

@y

@y0

@y

�
�1�2 C .lower-order terms/:

Then

A�.��.�// D
0
@ jr�1j2

h
@x0

@x

@y0

@x
C @x0

@y

@y0

@y

i
h
@x0

@x

@y0

@x
C @x0

@y

@y0

@y

i
jr�2j2

1
A :

The matrix A�.��.�// is positive definite provided that the change of coordinates
� is a diffeomorphism (i.e., has nondegenerate Jacobian). It is this positive
definiteness property of the symbol that is crucial to the success of the theory of
pseudodifferential operators (see [KRA4, Chap. 3]). For our study of the boundary
regularity of conformal mappings, the transformation properties of the Laplacian
under holomorphic mappings were sufficient.

6.10 Existence of Certain Smooth Plurisubharmonic
Defining Functions for Strictly Pseudoconvex Domains
and Applications

6.10.1 Introduction

In classical analysis, an important theorem of Painlevé [PAI] and Kellogg [KEL]
states that any conformal mapping between two smoothly bounded domains in the
complex plane C can be extended to be a diffeomorphism on the closures of the
domains. This theorem was generalized by Fefferman [FEF1, Part I] in 1974 to
strictly pseudoconvex domains in C

n. Fefferman’s original proof of this theorem is
very technical, relying as it does on deep work on the boundary asymptotics of the
Bergman kernel and on the regularity of @-Neumann operator that is due to Folland
and Kohn [FOK]. Bell–Ligocka [BELL], and later Bell [BEL1], gave a simpler
proof which deals with more general domains, including pseudoconvex domains
of finite type, by using regularity of the Bergman projection and the @-Neumann
operator as studied by Folland and Kohn [FOK], Catlin [CAT2], Boas–Straube
[BOS1], and others.

We know from [KER3] that Painlevé and Kellogg’s theorem can be proved by us-
ing the regularity of the Dirichlet problem for the Laplacian in a smoothly bounded
planar domain, where the property of the Laplacian being conformally invariant
plays an important role in the proof. (See [BEK] for another point of view, and also
the discussion in the last section.) The natural generalization of the Laplacian in one
complex variable to several complex variables, with these considerations in mind, is
the complex Monge–Ampère equation. In [KER3], Kerzman observed that the proof
of the Fefferman mapping theorem would follow from the C1 global regularity of
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the Dirichlet problem of a degenerate complex Monge–Ampère equation. However,
counterexamples in Bedford–Fornæss [BEF2] as well as in Gamelin–Sibony [GAS]
show that, in general, the degenerate Dirichlet problem for the complex Monge–
Ampère equation does not have C2 boundary regularity. Thus Kerzman’s idea does
not work in the sense of its original formulation.

The main purpose of the present section is to construct a plurisubharmonic
defining function � for a smoothly bounded strictly pseudoconvex domain in C

n

with detH.�/ vanishing to higher order near the boundary, whereH.�/ denotes the
complex hessian of �. In other words, we shall prove the following theorem:

Theorem 6.10.1. Let ˝ be a bounded strictly pseudoconvex domain in C
n with

C1 boundary ı˝. For any 0 < � << 1 and any positive integer q, there is a
plurisubharmonic defining function �q 2 C1.˝/ for ˝ so that

detH.�q/.z/ � Cdist.z; ı˝/q; z 2 ˝: (6.10.1.1)

Combining Theorem 6.10.1 with a result of Caffarelli et al. [CKNS] on the
Dirichlet problem for the complex Monge–Ampère equation, we provide a new
proof for the following result, which was proved in [BEC, DIF4]:

Corollary 6.10.2. Let ˝j ; j D 1; 2 be two bounded strictly pseudoconvex do-
mains in C

n with C1 boundary. Let ' W ˝1 ! ˝2 be a proper holomorphic
mapping. Then for any � > 0 we have

(i) ' can be extended as a Lip1.˝1/ mapping.
(ii) det.'0/ 2 Lip1=2.˝1/.

(iii) There is a C2 defining function � for ˝2 so that, for any k D 1; : : : ; n, we havePn
jD1

h
ı�

ıwj
ı '
i

� ı'j
ızk

2 Lip1.˝1/.

As a corollary of (ii) and of a theorem in [FOR,NWY,PIH,WEB2], we may give
a new proof of the Fefferman mapping theorem.

Our presentation is organized as follows. In the next section, Theorem 6.10.1 is
proved. In the following section, some applications are given.

6.11 Proof of Theorem 6.10.1

We now supply the proof of the first theorem.

Proof of Theorem 6.10.1. Let ı.z/ denote the (signed) distance function from z
to @˝ (positive inside and negative outside). Since ˝ is a bounded domain in C

n

with C1 boundary @˝, then ı.z/ 2 C1.˝/ (after modification of the distance
function on a compact set in the interior). By a rotation we see that, for any fixed
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point z0 2 ˝ near the boundary, we may assume that the zn direction is the normal

direction
�
@ı
@z1
; : : : ; @ı

@zn

�
at the point z0. Let

H.ı/n�1.z/ D
�
@2ı

@z`@zq
.z/

�
1�`;q�n�1

Since ˝ is strictly pseudoconvex, there is an � > 0 so that

	H.ı/n�1.z0/ � �In�1

for all z 2 ˝ with ı.z/ � �. We may assume that H.ı/n�1 is diagonalized at z0.
Note that

H.	ı/.z/ D
"

	H.ı/n�1.z/ 0

0 �@2ı
@zn@zn

#
:

If it happens that
P

i;j
@ı
@zi

@ı
@zj

@2ı
@zi @zj

D 0, then �q.z/ D 	ı.z/C ı.z/2Cq is the desired
defining function. (In fact it is these terms that distinguish the study of the real
Hessian from the more subtle study of the complex Hessian. In particular, we know
that @2ı=@x2n equals 0, but the term @2ı=@zn@zn may not be zero. Therefore estimate
(6.10.1.1) is much easier to check for the determinant of the real Hessian of ı;
matters are much trickier for the complex Hessian.)

Now we let

�.z/ D 	ı.z/
and

rŒm
.z/ D �.z/C
mX
kD2

ak.z/ı.z/
k z 2 ˝:

We will prove inductively that

det.H.rŒm
/.z// D bm�1.z/ � �m�1;

where bm�1 is some smooth function. In particular, det.H.rŒm
/ vanishes to order
m 	 1 at the boundary.

Now

@i jr
Œm
.z/ D @i j�.z/C

mX
kD2

�
@i jak �.z/

2 C k.k 	 1/ak@i�@j�/

�
�k�2

C
mX
kD2

k

�
@iak@j�C @i�@jak C ak�i j

�
�k�1:
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Let H.rŒm
/n�1.z/ D Œ ı
2rŒm


ızi ızj

.n�1/�.n�1/, and let B.z/� D Œrn1; : : : ; rnn�1
 be a row

vector. Then

H.rŒm
/.z/ D
"
H.rŒm
/n�1.z/ B.z/

B.z/� r
Œm


nn .z/

#
:

Then

det.H.rŒm
/.z// D det.H.rŒm
/n�1.z//Œr Œm
nn 	 fB�H.rŒm
/n�1.z/g�1B.z/
:

We know that

H.rŒm
/n�1.z/ � �In�1

for all z 2 ˝� , where � is a positive number depending only on ˝ and kaj kC2.˝/.
At first, we let

.d�/.z/ D
X
i;j

�i�j�i j I

then we define

a2.z/ D 	 .d�/.z/

2..d�/.z/C j@�j4/ :

Thus we have

rnn.z/ D �nn C
mX
kD2
Œ@nnak�

k C k.k 	 1/akj@�j2�k�2


C
mX
kD2

kŒ@nak@n�C @n�@nak C ak�nn
�
k�1

D
mX
kD2
Œ@nnak�

k C k.k C 1/akC1j@�j2�k�1


C
mX
kD2

kŒ@nak@n�C @n�@nak C ak�nn
�
k�1

D O.�/:

Therefore

det.H.rŒ2
/.z// D b1.z/�.z/:
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Assume that we have constructed rŒm
 D �.z/CPm
kD2 ak�.z/k such that

det.H.rŒm
/.z// D bm�1.z/�m�1; z 2 ˝:

We consider

rŒmC1
 D rŒm
 C amC1�.z/mC1:

Since

H.rŒmC1
/.z/ D H.rŒm
/C �.z/mC1H.amC1/.z/C .mC 1/amC1�.z/mH.�/

C.mC 1/mamC1�m�1@�.z/˝ @�

C.mC 1/�.z/mŒ@�˝ @amC1 C @amC1 ˝ @�
;

it is easy to see that

det.H.rŒmC1
/.z// D bm.z/�.z/
m/C det

�
H.rŒm
/C .mC 1/mamC1�m�1/


:

By a rotation, we may let zn be the complex normal direction of @˝@.z/ at z. Thus

det

�
H.rŒm
/.z/C .mC 1/m�.z/m�1@�.z/˝ @�

�
D det M;

where

M D
"
H.rŒm
/n�1.z/ B.m/.z/

B.m/.z/� r
Œm


nn .z/C .mC 1/m�m�1�n�n

#
:

But this

D det.H.rŒm
/n�1.z/Œr Œm
nn C B.m/�H.rŒm
/n�1.z/�1B.m/.z/

C.mC 1/m�m�1�n�n


D det.H.rŒm
/.z//C det.H.rŒm
/n�1.z//.mC 1/m�n�n�.z/
m�1

D bm�1.z/�.z/m�1 C det.H.rŒm
/n�1.z//.mC 1/m�n�n�.z/
m�1:

We need to choose amC1 such that

bm�1.z/C .mC 1/m det.H.rŒm
/n�1.z//�n�n.z/ D 0:

From this it will follow that

det.H.rŒmC1
/.z// D bm.z/�.z/
m:
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From the construction, we know that H.rŒm
/n�1.z/ is positive definite with least
positive eigenvalue �m for all z 2 ˝ n ˝�m . Thus if cm is large enough so that
jrıj2cm � 2jbm.z/j, then, by choosing �m small enough, we will easily see that the
function

�m.z/ � rŒmC1
.z/C cmı.z/
mC2 (6.10.1.2)

is strictly plurisubharmonic in ˝ n˝�m and (6.10.1) holds on ˝ n˝�m . Here ˝t D
fz 2 ˝ W ı.z/ < tg. Then we use arguments in [CKNS,LI] to extend �m to be defined
on ˝ and strictly plurisubharmonic on ˝. The proof of the theorem is complete.

6.12 Application of the Complex Monge–Ampère Equation

In this section, we shall prove Corollary 6.10.2. Let us recall a theorem of Caffarelli
et al. [CKNS].

Theorem 6.12.1. Let˝ be a bounded, strictly pseudoconvex domain in C
n withC4

boundary @˝. Let f be a nonnegative function on ˝ such that f .z/1=n 2 C1;1.˝/.
Let H.u/ denote the complex Hessian matrix of the function u. Then there is a
unique plurisubharmonic function v 2 C1;1.˝/ satisfying

detH.v/.z/ D f .z/ for z 2 ˝I
v D 0 for z 2 ı˝ : (6.12.1.1)

Proof of Corollary 6.10.2. Let ' W ˝1 ! ˝2 be a proper holomorphic mapping,
and let �4n be the plurisubharmonic defining function for˝2, withm D 4n, that we
constructed in Theorem 6.10.1. We let

r.z/ D �4n.'.z//; z 2 ˝1:

Then we have

detH.r/.z/ D det.H.�4n/.'.z///j det'0.z/j2 D f .z/; z 2 ˝1:

Since det.H.�4n.'.z// � O.�.'.z//4n � Cdist.z; @˝1/
4n and j det'0.z/j2 �

Cdist.z; @˝/�2n. We have f .z/1=n 2 C1;1.˝1/ and f � 0. Theorem 6.12.1 implies
that r 2 C1;1.˝1/ \ C2.˝1/. So

krkC1;1.˝1/
� C:

It is obvious that exp.�4n/ is strictly plurisubharmonic in ˝2 and that there is a
constant � > 0 so that
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H.exp.�4n/.w/ � �In; for all w 2 ˝2:

Thus

@2 exp.r.z//

@z`@z`
D

nX
p;`D1

@2 exp.�4n/

@wp@w`
.'.z//

@'p

@z`

@'`

@z`
.z/

� �

nX
pD1

ˇ̌
ˇ@'p
@z`

.z/
ˇ̌
ˇ2:

This shows that

k'k2
Lip.˝1/

� C��1
0 k exp.r/kC1;1.˝1/

:

Thus we have det.'0.z// 2 L1.˝1/.
If we apply @2

@z`@zm
to r.z/ and use the above result, then we have

ˇ̌
ˇ̌
ˇ̌
nX

pD1

@�4n

@wp
.'.z//

@2'p

@z`@zm

ˇ̌
ˇ̌
ˇ̌ � C : (6.10.2.1)

Let z0 2 ˝1 be sufficiently near to @˝1. Without loss of generality, by applying a
rotation, we may assume that z01; : : : ; z

0
n�1 are complex tangential at z0 and also that

at the point '.z0/ the directions w1; : : : ;wn�1 are complex tangential. Thus

@

@zp
log.det.'0.z0///.z/

D
nX

`;mD1
'`m

@2'm

@z`@zp
.z/

D
X
`<n

'`m
@2'm

@z`@zp
.z/C

X
m<n

'nm
@2'm

@zn@zp
.z/C 'nn

@2'n

@zn@zp
.z/;

where .'`m/ is the inverse matrix of '0.z/. Since ' 2 Lip1.˝1/, we have

ˇ̌
ˇ̌ @2'm
@z`@zp

.z0/

ˇ̌
ˇ̌ � C@1.z/

�1=2

for all 1 � ` � n 	 1 and 1 � m;p � n. By (6.10.2.1), we have

ˇ̌
ˇ̌ @2'n
@zn@zp

.z0/

ˇ̌
ˇ̌ � C:
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Now we consider the terms with 1 � m � n 	 1. Since .0; : : : ; 0; 'n/ is normal at
'.z0/ and z1; : : : ; zn�1 are complex tangential to ı˝1 at z0, we have

ˇ̌
ˇ@'n
@z`

ˇ̌
ˇ � Cı2.'.z0//

1=2 � Cı1.z0/
1=2:

Since det.'0.z// is bounded and

j det.'.z//'`m.z/j � C;

we see that

j det.'0.z/'nm.z0/
@2'm

@zn@zn
.z0/j

� C@1.z0/
�1
ˇ̌
ˇ̌det.

@'p

@z`
/1�`�n�1;p¤m/

ˇ̌
ˇ̌

� C@1.z/
�1=2:

Combining all the estimates, we have proved that

jr det.'0.z//j D j det.'0.z//r det.'0.z/ log det.'0.z//j � Cı.z/�1=2;

for all z 2 ˝1: Hence, det.'0.z// 2 Lip1=2.˝1/. The proof of Corollary 6.10.2 is
complete.

Note: Combining Corollary 6.10.2 and results in [FOR,NWY,PIH,WEB1,WEB2],
we obtain a new proof of the Fefferman’s mapping theorem in [FEF1]. Fefferman’s
theorem is treated in some detail in Sect. 3.3, 6.7.

6.13 An Example of David Barrett

As discussed in Sects. 2.1 and 6.1, Bell’s Condition R is a matter of some interest.
While there was originally hope that Condition R would hold on any smoothly
bounded, pseudoconvex domain, we now know (see [CHR1]) that Condition R
fails on the worm domain of Diederich and Fornæss. Before Christ’s result, David
Barrett [BAR1] exhibited a smoothly bounded, non-pseudoconvex domain on which
Condition R fails. We treat that example now.

We begin by defining three real-valued functions, r1, r2, and c, on the interval
Œ1; 6
. Each of these is smooth on .1; 6/. They are given by
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Fig. 6.2 The function
y D r1.x/

Fig. 6.3 The function
y D r2.x/

r1.x/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

3 	 p
x 	 1 for x � 1 near 1

decreasing for 1 � x � 2

1 for 2 � x � 5

increasing for 5 � x � 6

3 	 p
6 	 x for x � 6 near 6 :

The function is exhibited in Fig. 6.2.
Second,

r2.x/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

3C p
x 	 1 for x � 1 near 1

increasing for 1 � x � 2

4 for 2 � x � 5

decreasing for 5 � x � 6

3C p
6 	 x for x � 6 near 6 :

The function is exhibited in Fig. 6.3.
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Fig. 6.4 The function
y D c.x/

Finally, for a positive integer k,

c.x/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

0 for 1 � x � 2

decreasing for 2 � x � 3

.x 	 3/2k 	 1 for 3 	 � < x < 3C �; � > 0 small
increasing for 3 � x � 4

	.x 	 4/2k C 1 for 4 	 � < x < 4C �; � > 0 small
decreasing for 4 � x � 5

0 for 5 � x � 6 :

The function is exhibited in Fig. 6.4.
Now define

˝f.z;w/ 2 C
2 W 1 < jwj < 6; jzj < r2.jwj/; jz 	 c.jwj/j > r1.jwj/g :

Let

˝w D fz 2 C W .z;w/ 2 ˝g
be the cross section of ˝ at w.

We note the following:

(a) If 2 � jwj � 5, then˝w consists of the disc jzj < 4minus a unit disc of varying
center.

(b) If 1 < jwj � 2 or 5 � jwj < 6, then the slices ˝w are annuli collapsing towards
the circle jzj D 3 at the limiting values jwj D 1 and jwj D 6.

(c) The domain ˝ is smooth near the limiting values jwj D 1 and jwj D 6 since it
is defined there by the inequalities .jzj 	 3/2 < jwj 	 1 and .jzj 	 3/2 < 6	 jwj,
respectively.

(d) The union of the ˝w for 1 � jwj � 6 is the punctured disc 0 < jzj < 4.

We now have three key lemmas. In what follows, we let P denote the Bergman
projection on ˝ and O.˝/ the space of all holomorphic functions on ˝. Further
we let C1

c .˝/ be the C1 functions with compact support in ˝.
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Lemma 6.13.1. The space P.C1
c .˝// is dense in L2.˝/ \ O.˝/.

Lemma 6.13.2. The function 1=z lies in L2.˝/ \ O.˝/.
Lemma 6.13.3. Let p � 2 C 1=k. Any function g 2 Lp.˝/ \ O.˝/ which is
independent of the variable w extends to a holomorphic function of z on the disc
jzj < 4.

These three lemmas will imply the main result. We now prove the lemmas.

Proof of Lemma 6.13.1. Let h 2 L2.˝/ \ O.˝/ be orthogonal to P.C1
c .˝//.

Then, for every � 2 C1
c .˝/,

Z
˝

� � jhj2 dV.z;w/ D
Z
˝

.�h/ � h dV.z;w/ D
Z
˝

P.�h/ � h dV.z;w/ D 0 :

If � is taken to be nonnegative, then we must conclude that h D 0 on the support of
�. Since the choice of � is otherwise arbitrary, we see that h � 0. That concludes
the proof.

Proof of Lemma 6.13.2. We calculate that

k1=zk2
L2.˝/

D
Z
˝

1=jzj2 dV.z;w/

D 2�

Z 6

1

jwj djwj
Z
˝jwj

1=jzj2 dA.z/ : (6.13.2.1)

Now define

I.t/ D t

Z
Dt

1=jzj2 dA.z/

for t real. Clearly, in view of (6.13.2.1), our job is to show that
R 6
1
I.t/ dt < 1.

It is plain that, for t away from 3 to 4, I.t/ is well behaved (indeed bounded). So
we must examine the behavior for t near 3 and for t near 4. For t near 3,

˝t � fz 2 C W .t 	 3/2k < jzj < 4g :

Hence,

I.t/ � t

Z
.t�3/2k<jzj<4

1=jzj2 dA.z/

D 2�t logŒ4=.t 	 3/2k
 :
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Certainly the logarithm function is integrable. So I.t/ is integrable near 3. A similar
argument can be applied to analyze the situation for t near 4. Thus 1=jzj is in L2 and
the result is proved.

Proof of Lemma 6.13.3. This is the trickiest of the three lemmas.
First observe that if p D 1, then the result follows from the Riemann removable

singularities theorem. So assume that p < 1, and let h 2 Lp.˝/ \ O.˝/ be
independent of w. Write

h.z;w/ D h.z/ D
1X

jD�1
aj zj :

Certainly this series converges for 0 < jzj < 4. We calculate that

khkpLp.˝/ D 2�

Z 6

1

jwj d jwj
Z
˝jwj

jh.z/jp dA.z/

� 2�

Z �

��
dt
Z
˝3Ct[˝4Ct

jh.z/jp dA.z/ :

For small t , we see that

˝3Ct [˝4Ct D fz 2 C W jzj < 4g n fz 2 C W jz	1Ct 2kj < 1; jzC1	t 2kj < 1g
 fz 2 C W 2jt j2k < jzj < 4g :

As a result,

khkpLp.˝/ � 4�

Z �

0

dt
Z
2tk<jzj<4

jh.z/jp dA.z/ : (6.13.3.1)

Since h 2 L2.˝/ \ O.˝/, we may use line (6.13.3.1) to calculate that

1 > 4�

Z �

0

dt
Z
2tk<jzj<4

ˇ̌
ˇ̌X
j

aj zj
ˇ̌
ˇ̌2 dA.z/

D 4�
X
j

jaj j2
Z �

0

dt
Z
2tk<jzj<4

jzj2j dA.z/

D 8�2

8<
:ja�1j2

Z �

0

log.2t�k/ dtC
X
j¤�1

jaj j2 4
jC1

2jC2
Z �

0

.4jC1	t 2.jC1/k/ dt

9=
; :

We see then that aj D 0 when 2.j C1/k � 	1, in other words when j � 	2. Thus
h may be written as h.z/ D b=z C g.z/, where g is holomorphic in the disc jzj < 4.
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Certainly g 2 Lp.˝/ (because 1=z 62 L2). But line (6.13.3.1) now tells us that

k1=zkLp.˝/ � 4�

Z �

0

dt
Z
2tk<jzj<4

jzj�p dA.z/

D 8�2 � 2
2�p

2 	 p
Z �

0

	
22�p 	 t .2�p/k
 dt

D C1

if .2 	 p/k � 	1, that is, if p � 2 C 1=k. Thus, the only way that h can be in
Lp.˝/ is if b D 0. That proves the lemma.

Theorem 6.13.4. Let p � 2C 1=k. Then the space P.C1
c .˝// is not a subset of

Lp.˝/.

Proof: Lemma 6.13.1 tells us that it suffices to show that Lp.˝/ \ O.˝/ is not
dense in L2.˝/ \ O.˝/ when p � 2C 1=k. By Lemma 6.13.2, it thus suffices to
show that the function 1=z cannot be approximated in the L2 topology by functions
in Lp.˝/ \ O.˝/.

Seeking a contradiction, let us then suppose that we have functions fhj g1
jD1 in

Lp.˝/ \ O.˝/ with hj ! 1=z in L2.˝/. Set

gj .z;w/ D 1

2�

Z 2�

0

hj .z; e
i�w/ d� :

Then gj 2 Lp.˝/\O.˝/ and gj ! 1=z in L2.˝/. Moreover, each gj is constant
on circles of the form f.z; ei�w/ W 0 � � � 2�g; thus each gj is locally independent
of w.

We claim that actually each gj is globally independent of w. We already know
that gj is independent of w in a neighborhood of the product set

f.z;w/ 2 C
2 W 1 < jwj < 6; jzj D 3g � ˝ :

Thus for any two points w1;w2 in the annulus 1 < jwj < 6, the functions gj . � ;w1/
and gj . � ;w2/ have as common domain of definition the connected open set ˝w1 \
˝w2 . Since the two functions agree near the circle jzj D 3, we have that gj .z;w1/ D
gj .z;w2/ whenever .z;w1/ and .z;w2/ are in ˝, as we wished to show.

As a consequence, Lemma 6.13.3 tells us that the gj extend to holomorphic
functions of z on the disc jzj < 4, so that the residue

1

2�i

Z
jzjD3

gj .z/ dz

must vanish. But gj ! 1=z uniformly on compact subsets of ˝, so that
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1

2�i

Z
jzjD3

gj .z/ dz ! 1

2�i

Z
jzjD3

1

z
dz D 1 :

This contradiction proves the theorem.

This example of Barrett has the advantage of being elementary and accessible.
But it must be stressed that the domain he produces is not pseudoconvex. As
previously noted, M. Christ has given us the more dramatic and important example
in that he shows that the Diederich–Fornæss worm domain does not satisfy
Condition R (see [CHS] for information about the worm). Y.-T. Siu [SIU] has
offered another proof of Christ’s result. Neither proof is easy.

Here we shall offer a few words about why Christ’s proof works. We begin with
a quick review of the properties of the worm. Refer to Sects. 6.1 and 6.2 for basic
properties of worm domains.

Now we turn to Christ’s theorem. In order to discuss the failure of Condition
R on the Diederich–Fornæss worm domain, we recall the basic facts about the @-
Neumann problem.

Let ˝ � C
n be a bounded domain with smooth boundary and let � be a smooth

defining function for˝. The @-Neumann problem on˝ is a boundary value problem
for the elliptic partial differential operator

D @@
� C @

�
@ :

Here @
�

denotes the L2-Hilbert space adjoint of the (unbounded) operators @. Of
course acts componentwise, just as a multiple of the Laplacian.

In order to apply to a form or current u, one needs to require that u; @u 2
dom.@

�
/. These conditions translate into two differential equations on the boundary

for u and they are called the @-Neumann boundary conditions [FOK] or [TRE].
These equations are

uy@� D 0 ; and @uy@� D 0 ; on @˝ : (6.13.5)

Thus the equation u D f becomes a boundary value problem.

u D f on ˝

uy@� D 0 ; @uy@� D 0 on @˝ : (6.13.6)

This is an equation defined on forms. The significant problem is for .0; 1/-forms,
and we restrict to this case in the present discussion.

It follows from Hörmanders’ original article on the solution of the @-equation
[HOR1] that the @-Neumann problem is always solvable on a bounded pseudocon-
vex domain ˝ in C

n with smooth boundary for any data f 2 L2.˝/. We denote by
N—the Neumann operator—such a solution operator. Moreover, N turns out to be
continuous in the L2-topology:
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kNukL2 � ckukL2 :

An important formula of Kohn (see Sect. 6.7) says that

P D I 	 @�
N@ :

The proof of this is a formal calculation—see [KRA4]. Important work by Boas and
Straube [BOS2] essentially established that the Neumann operator N has a certain
regularity (i.e., it maps some Sobolev space W s to itself, for instance) if and only
if P will have the same regularity property. In particular, if N is continuous on a
Sobolev spaceW s for some s > 0 (of .0; 1/-forms), then the Bergman projection P
is continuous on the same Sobolev space W s (of functions).

Such regularity is well known to hold on strictly pseudoconvex domains [FOK,
KRA4]. In addition, Catlin proved a similar regularity result on finite type domains
(see [CAT1, CAT2, KRA1]).

Michael Christ’s milestone result [CHR1] has proved to be of central importance
for the field. It demonstrates concretely the seminal role of the worm and points to
future directions for research. Certainly the research program being described here,
including the calculations in [KRP1], is inspired by Christ’s work.

Christ’s work is primarily concerned with global regularity or global hypoellip-
ticity. A partial differential operator L is said to be globally hypoelliptic if whenever
Lu D f and f is globally C1, then u is globally C1. We measure regularity, here
and in what follows, using the standard Sobolev spaces W s , 0 < s < 1 (see
[KRA4, HOR2]).

Christ’s proof of the failure of global hypoellipticity is a highly complex and
recondite calculation with pseudodifferential operators. We cannot replicate it here.
But the ideas are so important that we feel it worthwhile to outline his argument.
We owe a debt to the elegant and informative article [CHR2] for these ideas.

As a boundary value problem for an elliptic operator, the @-Neumann problem
may be treated by Caldéron’s method of reduction to a pseudodifferential equation
on @˝. The sources [HOR3,TRE] give full explanations of the classical ideas about
this reduction. In the more modern reference [CNS], Chang et al. elaborate the
specific application of these ideas to the @-Neumann problem in C

2. (Thus in the
remaining part of this discussion,˝ will denote a smoothly bounded pseudoconvex
domain in C

2.) The upshot is that one reduces the solution of the equation u D f

to the solution of an equation Cv D g on the boundary. Here, u and f are .0; 1/-
forms, while v and g are sections of a certain complex line bundle on @˝. (The fact
that this bundle is one dimensional is a consequence of the inclusion ˝ � C

2.)
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To be more explicit, the solution u of (6.13.6) can be written as u D Gf C Rv,
where G is Green’s operator and R is the Poisson operator3 for the operator and
v is chosen in such a way as to satisfy the boundary conditions. In fact,

	
Gf C Rv


 D f C 0 D f on ˝
	
Gf C Rv



y@� D vy@� D 0 on @˝

@
	
Gf C Rv



y@� D @Gb@�C @vy@� D 0 on @˝ :

The section v has two components, but one of these vanishes because of the first @-
Neumann boundary condition. The second @-Neumann boundary condition may be
written as an equation Cv D g on @˝, where C is a pseudodifferential operator
of order 1. Also we note that g D .@Gf y@�/ restricted to @˝.

Christ’s argument begins with a real-variable model for the @-Neumann problem
that meshes well with the geometry of the boundary of the worm domain W .

Let M be the two-torus T2 and let X; Y two smooth real vector fields on M . Fix
a coordinate patch V0 in M and suppose that V0 has been identified with f.x; t/ 2
.	2; 2/ � .	2ı;	2ı/g � R

2: Let J D Œ	1; 1
 � f0g � V0.
Call a piecewise smooth path 	 on M admissible if every tangent to 	 is in the

span of X; Y . Assume that:

1. The vector fields X; Y; ŒX; Y 
 span the tangent space to M at every point of
M n J .

2. In V0, X � @x and Y � b.x; t/@t .
3. For all jxj � 1 and jt j � ı, we have that b.x; t/ D ˛.x/t C O.t2/, where ˛.x/

is nowhere vanishing.

It follows then that every pair x; y 2 M is connected by an admissible path.

Theorem 6.13.7. With X; Y;M as above, let L be any partial differential operator
on M of the form L D 	x2 	 Y 2 C a, where a 2 C1.M/ and

kuk2 � C hLu; ui (6.13.7.1)

for all u 2 C2.M/. Then L is not globally regular in C1.

We note that our hypotheses, particularly inequality (6.13.7.1), imply that L has
a well-defined inverse L�1 which is a bounded linear operator on L2.M/.

The following theorem gives a more complete, and quantitative, version of this
result:

3Thus G is the solution operator for the elliptic boundary value problem .Gf / D f on ˝
and Gf D 0 on @˝, while R is the solution operator for the elliptic boundary value problem
.Rv/ D 0 on ˝ and Rv D v on @˝.
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Theorem 6.13.8. Let X; Y;M;L be as above. Then L has the following global
properties:

(a) There is a positive number s0 such that, for every 0 < s < s0, L�1 preserves
W s.M/.

(b) For each s > s0, L�1 fails to map C1.M/ to W s.M/.
(c) There is a sequence of values s < r tending to infinity such that if u 2 W s.M/

satisfies Lu 2 Hr.M/ then u 2 Hr ;
(d) There are arbitrarily large values of s with a constant C D Cs such that if

u 2 W s.M/ is such that Lu 2 W s.M/, then

kukW s � CkLukW s : (6.13.8.1)

(e) For each value of s as in part (d), ff 2 W s.M/ W L�1f 2 W s.M/g is a closed
subspace of W s with finite codimension.

The proof of Theorem 6.13.8.1 breaks into two parts. The first part consists of
proving the a priori inequality (17). The second part, following ideas of Barrett
in [BAR2], shows that, for any s � s0, the operator L cannot be exactly regular on
W s.M/. We refer the reader to [CHR1] for the details. Section 8 of [CHR2] also
provides a nice outline of the analysis.

The next step is to reduce the analysis of the worm domain, as defined in our
Sects. 2.1 and 6.1, to the study of the manifold M as above. With this idea in mind,
we set L D @b and L its complex conjugate. The characteristic variety4 of L is a
real line bundle ˙ that splits smoothly as two rays: ˙ D ˙C [˙�.

The principal symbol of C vanishes only on ˙C that is half the characteristic
variety. We may compose C with an elliptic pseudodifferential operator of order
C1 to change C to the form

L D LLC B1LC B2LC B3 (6.13.9)

microlocally in a conical neighborhood of ˙C, where each Bj is a pseudodifferen-
tial operator with order not exceeding 0. Since C is elliptic on the complement
of ˙C, our analysis may thus be microlocalized to a small conical neighborhood
of ˙C.

For a worm domain W , there is circular symmetry in the second variable. This
induces a natural action on functions and on forms (as indicated in Sect. 6.1).
As indicated earlier, the Hilbert space of square-integrable .0; k/-forms has the
orthogonal decomposition ˚jHj

k . The Bergman projection and the Neumann

operator preserve Hj
0 and Hj

1 . We now have the following key result:

4The characteristic variety of a pseudodifferential operator is the conic subset of the cotangent
bundle on which its principal symbol vanishes.
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Proposition 6.13.10. Let W be the worm. Then there is a discrete subset S � R
C

such that, for each s 62 S and each j 2 Z, there is a constant C D C.s; j / < 1
such that, for each .0; 1/ form u 2 Hj

1 \C1.W/ such that Nu 2 C1, it holds that

kNukW s.W/ � C � kukW s.W/ :

The operators L, L, L, Bj in (6.13.9) may be constructed so as to commute
with the circle action in the second variable; hence, they will preserve each Hj . In
summary, for each j , the action of L on Hj .@W/ may be identified with the action
of an operator Lj on L2.@W=S1/.

Of course @W is three dimensional; hence, @W=S1 is a real two-dimensional
manifold. It is convenient to take coordinates .x; �; t/ on @W so that

z2 D exp.x C i�/ and z1 D exp.i2x/.ei t 	 1/ I

here j log jz2j2j � r and Lj takes the form LL C B1L C B2L C B3 (just as
in (6.13.9)!). In this last formula, L is a complex vector field which has the
form L D @x C i t˛.t/@t , where jxj � r=2, ˛.0/ ¤ 0, and each Bj is a
classical pseudodifferential operator of order not exceeding 0—depending on j in a
nonuniform manner.

We set J D f.x; t/ W jxj � r=2; t D 0g and write L D X C iY ; then
the vector fields X , Y , ŒX; Y 
 span the tangent space to @W=S1 at each point of
the complement of J and are tangent to J at every point of J . We conclude that
the operator Lj on @W=S1 is quite similar to the two-dimensional model that we
discussed above.

There are two complications which we must note (and which are not entirely
trivial): (1) There are pseudodifferential factors, and the reduction of the @-
Neumann problem to L, and thereafter to Lj , requires only a microlocal a priori
estimate for Lj in a conic subset of phase space; (2) the lower-order terms B1L,
B2L;B3 are not negligible; indeed, they determine the values of the exceptional
Sobolev exponents, but the analysis can be carried out for these terms as well.

It should be noted that a special feature of the worm is that the rotational
symmetry in z2 makes possible (as we have noted) a reduction to a two-dimensional
analysis, and this in turn produces a certain convenient ellipticity. There is no
uniformity of estimates with respect to j , but the analysis can be performed for
each fixed j .

6.14 The Bergman Kernel as a Hilbert Integral

Perhaps the most important and ubiquitous integral operator in all of analysis is the
Hilbert transform:
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f 7	!
Z
R

f .t/

x 	 t dt : (6.14.1)

This integral is interesting because it does not converge in the sense of the Lebesgue
integral. That is to say, the singularity of the function 1=.x	 t / is non-integrable. So
the integral (6.14.1) must be interpreted in the sense of the Cauchy principal value.
It is the most classical example of a singular integral. Essential to the understanding
of this integral is that the function 1=.x 	 t / has certain cancellation built into it.
In simplest terms, 1=t is odd, so it integrates to 0 on “spheres” (in dimension one a
sphere is just a pair of points centered at the origin) centered at 0. Because of this
cancellation property, the convolution with the kernel 1=t induces a distribution.
Thus the integral turns out to be tractable.

The concept of singular integral, at least in its classical form, really only makes
sense on a space with a homogeneous structure. Such a structure arises naturally
from a (Euclidean) group acting on the space. For R or RN , the natural group to
consider is the group of translations (although rotations and dilations also play a
distinctive role). The translations give rise to the notion of convolution, and the
Hilbert transform (6.14.1) is a convolution operator.

The Hilbert transform is important in classical analysis because it governs the
norm convergence (and, in a more subtle form, also the pointwise convergence)
of Fourier series. It also arises in the study of the regularity of important partial
differential operators. It is a fundamental result of M. Riesz that the Hilbert
transform is bounded on Lp for 1 < p < 1. It is unbounded on L1 and L1.

The Bergman kernel does not fit into the context just described. This kernel is
defined on a domain˝. There certainly is no translation structure and no concept of
convolution. A better model for the Bergman kernel is the classical Hilbert integral.
In its most basic form, the Hilbert integral is the operator given by

f 7	! Hf �
Z 1

0

f .t/

x C t
dt :

Here we think of f as a function with domain Œ0;1/ and the Hilbert integral Hf
also has domain Œ0;1/.

Certainly, on the half line, the kernel 1=.x C t / has no cancellation built into it.
Nonetheless, H is bounded on Lp for 1 < p < 1. Our treatment of the Hilbert
integral derives from [PHS1], [PHS2].

Proposition 6.14.2. Let 1 < p < 1. We have the estimate
Z 1

0

jHf.x/jp dx � Cp

Z 1

0

jf .x/j dx :

Proof: Let � > 0 and consider the integral

Z 1

0

���

x C �
d� : (6.14.2.1)
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The substitution � D x� gives that

.6:14:2:1/ D x�� �
Z 1

0

���

1C �
d� :

If 0 < � < 1 then the new integrand is clearly integrable at the origin. Also it is of
size ��1�� at infinity, so it is integrable there. Thus

.6:14:2:1/ D 	� � x�� :

Here 	� is a positive constant whose value can be determined, but is of no intrinsic
interest.

Now we write the Hilbert integral as

Hf.x/ D
Z 1

0

�
t �=qf .t/

.x C t /1=p

�
�
�

t��=q

.x C t /1=q

�
dt :

Here p and q are conjugate Hölder’s exponents: 1=pC1=q D 1with 1 < p; q < 1.
Now apply Hölder’s inequality with exponent p on the first integral and exponent q
on the second integral. The result is

jHf.x/j �
�Z 1

0

t �p=qjf .t/jp
x C t

dt

�1=q
�
�Z 1

0

t��

x C t
dt

�1=q
:

So we see that

jHf.x/jp � 	p=q� � x��p=q �
�Z 1

0

t �p=qjf .t/jp
x C t

dt

�
:

We integrate both sides with respect to x on the interval Œ0;1/ and apply Fubini.
Of course we must use (6.14.2.1) again (with � replaced by �p=q) to see that

Z 1

0

jHf.x/jp dx � Cp

Z 1

0

jf .x/j dx :

Note that, by the second application of (6.14.2.1), the term t �p=q cancels out. This
all works provide 0 < � < 1 and 0 < �p=q < 1. That completes the proof.

Next we turn to a higher-dimensional version of the Hilbert integral:

Proposition 6.14.3. Let L.x; t/ be a nonnegative kernel for .x; t/ 2 R
N � RC

which satisfies:

1. L.�x; �t/ D ��.NC1/ � L.x; t/ for all � > 0, all .x; t/ 2 R
N � RC.

2.
R
RN
L.x; 1/ dx D C < 1.
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Assume that the kernelK.x; y; t; u/ for .x; y; t; u/ 2 R
N �R

N �RC �RC satisfies

jK.x; y; t; u/j � L.x 	 y; t C u/ :

Define

Hf.x; t/ D
Z
RN

Z 1

0

K.x; y; t; u/f .y; u/ dydu ; .x; t/ 2 R
N � RC :

Then Z
RN

Z 1

0

jH.f /.x; t/jp dxdt � QCp
Z
RN

Z 1

0

jf .y; u/jp dydu (6.14.3.1)

whenever 1 < p < 1 and f 2 Lp.RNC1
C /.

Proof: It is enough to prove (6.14.3.1) with K replaced by L.x 	 y; t C u/ and we
do so. By homogeneity and change of variables in the integral,

Z
RN

L.x; t C u/ dx D .t C u/�.NC1/
Z
RN

L.
x

t C u
; 1/ dx

D .t C u/�1
Z
RN

L.x; 1/ dx

D C � .t C u/�1 :

Thus our estimate of line (6.14.3.1) gives

Z
RN

Z 1

0

L.x; t C u/u�� du D C � 	� � t�� : (6.14.3.2)

Now, just as in the proof of Proposition 6.14.2, we see that

jH.f /.x; t/j D
ˇ̌
ˇ̌Z

RN

Z 1

0

L.x 	 y; t C u/f .y; u/ dydu

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z
RN

Z 1

0

�
u�=q � f .y; u/ � .L.x 	 y; t C u//1=p



� �
u��=q � .L.x 	 y; t C u//1=q


dydu

ˇ̌

�
Z
RN

Z 1

0

u�p=qjf .y; u/jpL.x 	 y; t C u/ dydu1=p

�
Z
RN

Z 1

0

u��L.x 	 y; t C u/ dydu1=q

� .C	�t
��/1=q �

Z
RN

Z 1

0

u�p=qjf .y; u/jpL.x 	 y; t C u/ dydu1=p :
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As a result,

jHf.x; t/jp � .C	�t
��/p=q �

Z
RN

Z 1

0

u�p=qjf .y; u/jp � L.x 	 y; t C u/ dydu :

Now we integrate in x and t , apply Fubini, and utilize (6.14.3.2). Then, just as in
the proof of Proposition 6.14.2, we get the desired estimate.

Now let us split RN D R
p � R

q , where x D .xp; xq/, x 2 R
N , xp 2 R

p , and
xq 2 R

q . Of course N D p C q. For s > 0 we consider the nonisotropic dilations

.xp; xq/ 7	! .�xp; �sxq/ ; � > 0 :

We assume that RN is equipped with a group structure so that Lebesgue measure
dx D dxpdxq is the bi-invariant Haar measure. (An example of such a group
structure is ordinary translation. Another is the Heisenberg group structure, which
we shall consider below.) We denote the group operation by � and the group inverse
of g by g�1. Now a similar proof to that of the last proposition gives the following
generalization:

Proposition 6.14.4. Let L.x; t/ be a nonnegative kernel satisfying:

1. L.�xp; �sxq; �st/ D ��.pC.qC1/s/L.xp; xq; t/.
2.
R
RN
L.x; 1/ dx D C < 1.

3. jK.x; y; t; u/j � L.y�1 � x; t C u/.

Then the operator

H.f /.x; t/ D
Z
RN

Z 1

0

K.x; y; t; u/f .y; u/ dydu

is bounded on Lp .

The papers [PHS1] and [PHS2] apply these results on the Hilbert integral to
derive boundedness theorems for the Bergman integral. The methods are rather
detailed and technical, and we cannot treat them here.

Exercises

1. Show that the smooth worm domain may be exhausted by biholomorphic copies
of the non-smooth worm. [Hint: See [BAR2] for more on this idea.]

2. Let h2.˝/ be the real-valued harmonic functions on a domain ˝ in R
N which

satisfy a natural square integrability property. Show that h2 is a Hilbert space
with reproducing kernel in the sense of Aronszajn. How is the corresponding
kernel related to the Poisson kernel?
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3. Use the Fefferman asymptotic expansion for the Bergman kernel to actually
calculate an asymptotic formula for the holomorphic sectional curvature of the
Bergman metric on a strictly pseudoconvex domain. See [KLE] for details.

4. Show that the complex Monge–Ampère operator is invariant under biholomor-
phic mappings.

5. Calculate explicitly the Bergman kernel for the Sobolev space W 1 on the unit
disc in the plane.

6. Calculate explicitly the Bergman kernel for the Sobolev space W 1 on the unit
ball in complex space.

7. The Kohn projection formula easily shows that Condition R holds on any
smoothly bounded domain in the plane. Explain.

8. Consider the domains

˝m D fz 2 C W Re z > 0; jIm zj < .Re z/mg

for m a positive, even integer. What can you say about Condition R on such a
domain?

9. The original Diederich–Fornæss worm domain is strictly pseudoconvex except
on a boundary set of .2n 	 1/-dimensional measure zero. Explain.

10. Consider the linear space C1.˝/ for a smoothly bounded domain ˝ in R
N .

11. Is there any smoothly bounded domain in the complex plane on which Condition
R fails?

12. Show that the Diederich–Fornæss worm domain is topologically trivial.
13. Show that the Diederich–Fornæss worm domain is not biholomorphic to the unit

ball.



Chapter 7
Curvature of the Bergman Metric

We begin with a little introductory material on the scaling method. Then we use
these ideas to discuss Klembeck’s theorem about the boundary asymptotics of the
curvature of the Bergman metric on a strictly pseudoconvex domain.

7.1 What is the Scaling Method?

See [GKK] for the details behind the discussion here. The presentation here
owes much to that reference. If a bounded domain ˝ in C

n has a noncompact
automorphism group, then all the orbits of the automorphism group are noncompact.
Thus each orbit must “go out to the boundary” of the domain ˝, since orbits are
closed in˝. Boundary orbit accumulation points are pseudoconvex (see [GRK10]).
Under some reasonable hypothesis on the domain as a whole, e.g., that it is a
domain of holomorphy, one expects in general terms that localization properties
of the @-operator would imply that the geometric essentials of the domain would be
localized at boundary points. What does this mean? If a sequence of automorphisms
'j 2 Aut.˝/, j D 1; 2; : : :, has, for some X 2 ˝, lim'j .X/ D P 2 @˝, then the
structure of ˝ as a whole should be controlled by the nature of @˝ near P .

It has been conjectured by Greene and Krantz that, when such a P is a
C1 boundary point, it must be of “finite type” in the sense of D’Angelo (see
[KRA1, Sect. 11.5] [DAN1, DAN4]). In this case, rather precise information on
@-localization is also available (cf., [CAT2] and [CAT3]).

It has turned out that, for many purposes, the study of these matters has best
been achieved by way of a renormalized normal families process rather than by
looking at @ results as such (although it should be stressed that future work may
give greater emphasis to @ methods). The collection of techniques and results
of this sort has become known as the scaling method.1 This chapter is devoted

1In some geometric contexts this technique is also known as the “method of flattening.” We thank
M. Gromov for this comment.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 7,
© Springer Science+Business Media New York 2013
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to exploring this method and its results. In particular, we shall describe a new
result, the asymptotic constancy of holomorphic sectional curvature for C2 strictly
pseudoconvex domains. This result improves the result of Klembeck [KLE], which
used the Fefferman expansion and hence required C1 boundary. See [GKK] for
the origin of these ideas, and of this approach. This asymptotic constancy yields
important consequences for automorphism groups.

A good source for basic ideas about the scaling method, together with some
elegant applications, is [PIN].

In the Appendix to this chapter, we describe a one-dimensional scaling technique.
There is nothing new here, but it offers a microcosm of what this chapter is about. In
the next section we offer the fully developed version of scaling in higher dimensions.

7.2 Higher Dimensional Scaling

7.2.1 Nonisotropic Scaling

We now continue our discussion in complex dimension 2. Considerations in
dimension n are analogous but a bit more tedious. We demonstrate the scaling of
the complex two-dimensional ball

B2 D f.z1; z2/ 2 C
2 j jz1j2 C jz2j2 < 1g

at the boundary point .1; 0/.

Denote by aj a sequence of real numbers satisfying

0 < aj < ajC1 < 1 8j D 1; 2; : : :

and

lim
j!1 aj D 1;

and let qj D .aj ; 0/ for each j D 1; 2; : : :. Then consider the translation

T .z1; z2/ D .z1 	 1; z2/:

The domain T .B2/ is now defined by the inequality

j�1 C 1j2 C j�2j2 < 1

or, equivalently, by

2 Re �1 < 	j�1j2 	 j�2j2:



7.2 Higher Dimensional Scaling 253

Notice that the mapping

'j .z1; z2/ D
 

z1 C aj

1C aj z1
;

p
1 	 jaj j2
1C aj z1

z2

!

is an automorphism of B2 satisfying 'j .0/ D qj for every j . Finally consider

Lj .z1; z2/ D
 

z1
�j
;

z2p
�j

!

where �j D 1 	 aj for each j . Imitating the one-dimensional case (see the
Appendix), we consider the scaling sequence

 j .z1; z2/ D Lj ı T ı 'j .z1; z2/:

Notice here that Lj is a dilation but, unlike the one-dimensional case, it is
nonisotropic in the sense that the eigenvalues are not uniformly comparable.

We now compute the limit map O .z1; z2/ � lim
j!1 j .z1; z2/ and the set O .B2/.

A direct computation yields the following:

 j .z1; z2/ D
 
1

�j

�
z1 C aj

1C aj z1
	 1

�
;
1p
�j

�
p
1 	 aj 2

1C aj z1
� z2

!

D
 

z1 	 1
1C aj z1

;

p
1C aj z2
1C aj z1

!
:

Therefore we see immediately that

O .z1; z2/ D
 

z1 	 1
z1 C 1

;

p
2 z2

z1 C 1

!

and that  j converges to O uniformly on compact subsets of B2.
Observe that the map O W B2 ! C

2 is an injective holomorphic mapping and
that its image coincides with the Siegel half-space

U D f.z1; z2/ 2 C
2 j 2 Re z1 < 	jz2j2g :

Therefore O W B2 ! U is in fact a biholomorphic mapping.
Observe also that one can see the convergence of the sets  j .B2/ here. A direct

argument yields
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 j .B
2/ D Lj ı ˛j ı 'j .B2/

D Lj ı ˛j .B2/

D Lj
	fz 2 C

2 j jz1 C 1j2 < 1 	 jz2j2g



D Lj
	fz 2 C

2 j 2 Re z1 < 	jz1j2 	 jz2j2g



D fz 2 C
2 j 2 Re�j z1 < 	�j 2jz1j2 	 �j jz2j2g

D fz 2 C
2 j 2 Re z1 < 	�j jz1j2 	 jz2j2g:

Since �j & 0, it follows immediately that

 j .B
2/ � �jC1.B2/ 8j D 1; 2; : : :

and

1[
jD1

 j .B
2/ D U :

In this sense, it seems sensible to say that O .B2/ is in fact the limit domain of the
sequence of domain  j .B2/.

This simple example already illustrates an important aspect of the scaling
technique in complex dimension two (as well as in higher complex dimensions).

In view of the discussion of the one-dimensional scaling (see the Appendix), the
following theorem may be duly noted (see also the discussion in Sect. 3.3):

Theorem 7.2.1 (Wong 1977, Rosay 1979). Let˝ be a bounded domain in C
n with

a boundary point P 2 @˝ satisfying the following:

(i) @˝ is C2 smooth and strictly pseudoconvex near P .
(ii) There exists a sequence 'j 2 Aut˝ and an interior point X 2 ˝ such that

limj!1 'j .X/ D P .

Then the domain ˝ is biholomorphic to the unit ball in C
n.

We shall present a proof of this result, which illustrates the scaling method in
detail, in subsequent sections. First we shall present a detailed exposition of the
background theory starting with the notion of normal convergence of domains.

7.2.2 Normal Convergence of Sets

We first describe the concept of normal convergence of domains.
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Definition 7.2.2. Let ˝j be domains in C
n for each j D 1; 2; : : :. The sequence

˝j is said to converge normally to a domain Ő if the following two conditions
hold:

(i) If a compact set K is contained in the interior (i.e., the largest open subset) ofT
j>m ˝j for some positive integer m, then K � Ő .

(ii) If a compact subset K 0 lies in Ő , then there exists a constant m > 0 such that
K 0 � T

j>m ˝j .

The reason for introducing such ideas of convergence of sets is because these are
what are used for the scaling method and normal families with source and target
domains varying (compare with the idea of convergence in the Hausdorff metric—
see [FED]).

Proposition 7.2.3. If ˝j is a sequence of domains in C
n that converges normally

to the domain Ő , then:

(1) If a sequence of holomorphic mappings 'j W ˝j ! ˝ 0 from ˝j to another
domain ˝ 0 converges uniformly on compact subsets of Ő , then its limit is a
holomorphic mapping from Ő into the closure of the domain ˝ 0.

(2) If a sequence of holomorphic mappings gj W ˝ 0 ! ˝j converges uniformly on
compact subsets ofG, then its limit is a holomorphic mapping from the domain
˝ 0 into the closure of Ő .

7.2.3 Localization

Local Holomorphic Peak Functions

Definition 7.2.4. Let ˝ be a domain in C
n. A boundary point p 2 @˝ is said to

admit a holomorphic peak function if there exists a continuous function h W ˝ ! C

that satisfies the following properties:

(i) h is holomorphic on ˝.
(ii) h.p/ D 1.

(iii) jh.z/j < 1 for every z 2 ˝ n fpg.

Such a function h is called a holomorphic peak function for˝ at p. And p is called
a peak point.

Furthermore, we say that a boundary point p of ˝ admits a local holomorphic
peak function if there exists an open neighborhood U of p such that there exists a
holomorphic peak function for ˝ \ U at p (see [GAM, p. 52 ff.]).

Proposition 7.2.5. Let ˝ be a bounded domain in C
n with a C2 smooth, strictly

pseudoconvex boundary point p. Let Bn be the unit open ball in C
n. Let � be a

positive real number satisfying 0 < � < 1. Then, for every � > 0, there exists ı > 0
such that

jf .z/ 	 pj < �; 8z with jzj < � ;
for every holomorphic mapping f W Bn ! ˝ with jf .0/ 	 pj < ı.
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Proof. Assume to the contrary that there exist holomorphic mappings 'j W Bn ! ˝

satisfying the following two conditions:

(a) lim
j!1'j .0/ D p.

(b) 9� > 0 for which there exists a sequence zj 2 Bn such that jzj j < � and
j'j .zj / 	 pj � � for every j D 1; 2; : : :.

Let U be an open neighborhood of p such that there exists a local holomorphic
peak function h W ˝ \ U ! C at p. (Here we use the fact that a strictly
pseudoconvex boundary point always admits a local holomorphic peak function—
see [KRA1, Chap. 5].)

Since ˝ is bounded, Montel’s theorem yields that 'j admits a subsequence that
converges uniformly on compact subsets. By an abuse of notation, we denote the
subsequence by the same notation 'j and then the subsequential limit mapping by
F W Bn ! ˝.

Take an open neighborhood V of 0 sufficiently small so that it satisfies the
properties:

(1) V � Bn.
(2) There exists N > 0 such that 'j .V / � U \˝ for every j > N .

Consider the sequence of mappings hı'j jV W V ! D, whereD is the open unit
disc in C. Apply Montel’s theorem again to this sequence. Choosing a subsequence
from 'j again, we may assume that hı'j jV converges uniformly on compact subsets
of V to a holomorphic map G W V ! D. Since G.0/ D 1 and jG.�/j < 1 for every
� 2 V , the maximum principle implies that G.�/ � 1 for every � 2 V .

By the properties of the local holomorphic peak function h at p, this implies that
F.�/ D p for every � 2 V . Since V is open, and since F is holomorphic, it follows
that F.z/ D p for every z 2 Bn. Since the convergence of 'j to F is uniform on
compact subsets, it is impossible to have zj with jzj j � � such that 'j .zj / stays
away from p for every j . This contradiction completes the proof. �

Plurisubharmonic Peak Functions

There is an effective method of localization in a more general setting [SIB]). A main
point of this method is that it avoids Montel’s theorem altogether. Thus for instance,
the assumption that ˝ is bounded is no longer needed:

Definition 7.2.6. Let ˝ be a domain in C
n and let p be a boundary point. If there

exists a continuous function h W ˝ ! R satisfying:

(i) h is plurisubharmonic on ˝, and
(ii) h.p/ D 0 and h.z/ < 0 for every z 2 ˝ n f0g,
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then we call h a plurisubharmonic peak function at p for ˝. In such a case, p is
called a plurisubharmonic peak point for ˝.

Likewise, a boundary point p of the domain˝ is called a local plurisubharmonic
peak point if there exists an open neighborhood of p in C

n such that p is a
plurisubharmonic peak point for ˝ \ U .

We present first the following lower-bound estimate for the Kobayashi metric
near a local plurisubharmonic peak boundary point. See [SIB].

Proposition 7.2.7. Let ˝ be a bounded domain in C
n with a boundary point p 2

@˝ which admits a local plurisubharmonic peak function for ˝. Then, for every
open neighborhood U of p in C

n, there exists an open neighborhood V with p 2
V � U such that the inequality

k˝.z; �/ � 1

2
k˝\U .z; �/; 8.z; �/ 2 .˝ \ V / � C

n;

where k˝ denotes the infinitesimal Kobayashi pseudometric of a domain ˝.

Proof. Denote by Dr the open disc in C of radius r centered at the origin. For the
open unit disc, write D D D1.

By the definition of the Kobayashi metric, it suffices to prove the following
statement:

(7.2.7.1) It is possible to choose V so that the following holds: Given .z; �/ 2
.˝ \ V / � C

n, every holomorphic mapping f W D ! ˝ from the unit disc D
into ˝ satisfying f .0/ D z; df

ˇ̌
0
.�/ D � for some � > 0 enjoys the property that

f .D1=2/ � U .
Replacing U by a smaller neighborhood of p if necessary, let  1 W U \ ˝ be a

local plurisubharmonic peak function at p. Choose an open neighborhood U1 of p
inside U and a constant c1 > 0 such that

supf 1.z/ j z 2 ˝ \ @U1g D 	c1 :

Choose a neighborhood V1 of p inside U1 such that

V1 D fz 2 ˝ \ U1 j  1.z/ > 	c1
2

g :

Then we can extend  1 to a new function  2 W ˝ ! R by

 2.z/ D

8̂
<̂
ˆ̂:
 1.z/ if z 2 ˝ \ V1
maxf 1.z/;	3c1=2g if z 2 ˝ \ .U1 n V1/
	3c1=2 if z 2 ˝ n U1:

Notice that  2 is a global plurisubharmonic peak function for ˝ at p.
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Towards the proof of (7.2.7.1), there is no harm in assuming (by a simple dilation)
that the analytic disc f is holomorphic in a neighborhood of the closed unit discD.

Let a > 0 be such that  2 ı f .0/ > 	a. Consider

Ea D f� 2 Œ0; 2�
 j  2 ı f .ei� / � 	2ag :

By the sub-mean-value inequality, we see that

	a <  2 ı f .0/

� 1

2�

Z
Œ0;2�


 2 ı f .ei� / d�

� 1

2�

Z
Œ0;2�
nEa

.	2a/ d�

� 	 a
�
.2� 	 jEaj/;

where jS j denotes the Lebesgue measure of the set S . Hence, we see that

jEaj > �:

Now consider a plurisubharmonic function at p given by

��.z/ D � log kz 	 pk;

where � is a certain positive constant to be chosen shortly.
Let

inff 1.z/C ��.z/ j z 2 ˝ \ @V1g D 	c2;

and

supf 1.z/C ��.z/ j z 2 ˝ \ @U1g D 	c3:

Choose � > 0 so that

	c3 < 	c2 < 0:

Extend  1 C �� to the plurisubharmonic function � W ˝ ! R defined by

� .z/ D

8̂
ˆ̂<
ˆ̂̂:

 1.z/C ��.z/ if z 2 ˝ \ V1
maxf 1.z/C ��.z/;	c2 C c3

2
g if z 2 ˝ \ .U1 n V1/

	c2 C c3

2
if z 2 ˝ n U1:
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Observe that � �1.	1/ D fpg.

For each � 2 D1=2, apply the Poisson integral formula to obtain

� ı f .�/ � 1

10�

Z 2�

0

� ı f .ei� / d�:

We now focus upon the peak function  2 and the companion function � . Since
the sets

Gk D fz 2 ˝ j  2.z/ � 	1=kg
for k D 1; 2; : : : form a neighborhood basis for p in ˝, we see that for each L > 0
there exists a > 0 with a arbitrarily small such that

fz 2 ˝ j  2.z/ � 	2ag � fz 2 ˝ j � .z/ < 	Lg:
Then we present

Claim. If a holomorphic function f W D ! ˝ satisfies  2 ı f .0/ > 	a, then
� ı f .�/ � 	L=10 for every � 2 D1=2.

The proof is immediate; simply check for each � 2 D1=2 that

� ı f .�/ � 1

10�

Z 2�

0

� ı f .ei� / d�

� 1

10�

Z
Ea

.	L/ d� C 1

10�

Z
Œ0;2�
nEa

0 d�

D 	 L

10
:

Finally we are ready to finish the proof. Observe that the sets

Uk D fz 2 ˝ j � .z/ < 	 k

10
g

for k D 10; 11; : : : also form a neighborhood basis for p in ˝. By Claim 7.2.3
above, for each k we may choose ak > 0 such that

(1) � .z/ > 	k whenever  2.z/ > 	2ak .
(2) a10 > a11 > : : : ! 0.

Consequently, if we choose Vk D fz 2 ˝ j  2 > 	akg for each k, then it follows
immediately that

f .0/ 2 Vk ) f .D1=2/ � Uk

for every k D 10; 11; : : :. That is the proof. �
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Proposition 7.2.8. Let ˝ be a bounded domain in C
n with a boundary point p 2

@˝ which admits a local holomorphic peak function for ˝. Let K be a compact
subset of ˝ and let q 2 ˝. Then, for every open neighborhood U of p in C

n, there
exists an open set V with p 2 V � U such that f .K/ � U whenever f W ˝ ! ˝

is a holomorphic mapping satisfying f .q/ 2 V .

Proof. Note first that a local holomorphic peak function h at p generates the local
plurisubharmonic peak function log jhj at p.

Since the Kobayashi pseudo-distance dM W M �M ! R is continuous for any
complex manifold M , we may select R > 0 such that the Kobayashi distance ball

BK
˝ .q;R/ D fz 2 ˝ j d˝.z; q/ < Rg

contains K.

Then use the local holomorphic peak function h W U \ ˝ ! D at p. The
distance-decreasing property implies that

lim
˝\U3pj!p

d˝\U .z; pj / � lim
˝3pj!p

dD.h.z/; h.pj // D 1:

Moreover, the local holomorphic peak function and the distance-decreasing property
guarantee the existence of an open set U 0 with p 2 U 0 � U 0 � U and an open
neighborhood V with p 2 V 2 U 0 such that

d˝\U .z;w/ > 3R

for every z 2 V and every w 2 @U 0 \˝.

Now let � 2 ˝ n U . Then, by the definition of the Kobayashi metric, there
exists a piecewise smooth “almost-the-shortest” connector 	 W Œ0; 1
 ! ˝ with
	.0/ D z; 	.1/ D � induced from the holomorphic chain in the definition of the
Kobayashi metric such that

LK˝.	/ 	 R

2
< d˝.z; �/ < L

K
˝.	/;

whereLK˝.	/ denotes the length of 	 measured by the Kobayashi metric of˝. Since
	.Œ0; 1
/ has to cross @U 0 \˝, we let t 2 .0; 1/ such that 	.Œ0; t// � U 0 \˝ and
	.t/ 2 @U 0 \˝. Then it follows that

LK˝.	/ > L
K
˝.	 jŒ0;t 
/ > 1

2
LK˝\U .	 jŒ0;t 
/ > 1

2
d˝\U .z; 	.t// >

3

2
R:
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This therefore implies that

d˝.z; �/ >
3

2
R 	 R

2
D R:

In particular, BK
˝ .z; R/ � U whenever z 2 V .

Since f given in the hypothesis is a holomorphic mapping, the distance-
decreasing property of the Kobayashi distance yields that

f .K/ � f .BK
˝ .q;R// � BK

˝ .f .q/; R/ � U:

Since f .q/ 2 V , we see that BK
˝ .f .q/; R/ � U . This is what we wanted to

establish. �

7.3 Klembeck’s Theorem with Stability in the C 2 Topology

7.3.1 The Main Goal

We now describe Klembeck’s theorem with stability in the C2 topology.
We shall not prove anything in the ensuing discussion. Details may be found in

the book [GKK]. Our goal here is to introduce the reader to a circle of ideas.
The precise target should be described first. Denote by Dn the collection of

all bounded domains in C
n with C2 smooth, strictly pseudoconvex boundary. We

impose the C2 topology on Dn by invoking the C2 topology on defining functions.
Denote by S˝.pI �/ the holomorphic sectional curvature at p in the holomorphic

two-plane direction � of the Bergman metric of the domain ˝.

Theorem 7.3.1. Let Ő be a bounded strictly pseudoconvex domain with C2

boundary in C
n. Then, for every � > 0, there exist ı > 0 and an open neighborhood

U of Ő in Dn such that, whenever ˝ 2 U ,

sup
nˇ̌
ˇS˝.pI �/ 	

�
	 4

nC 1

�ˇ̌
ˇ W ˝ 2 U ; � 2 C

n n f0g
o
< �

whenever p 2 ˝ satisfies dis .p; @˝/ < ı.

The following gives in effect the localization of Bergman metric holomorphic
sectional curvature:

Theorem 7.3.2. There exists an open neighborhood U of the origin in C
n such that

lim
�!1 sup

�2Cn;j�jD1

ˇ̌
ˇ̌2 	 S˝�\U .p� I �/
2 	 S˝� .p� I �/

	 1
ˇ̌
ˇ̌ D 0:
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The conclusion of this statement implies: as soon as lim
�!1S˝�\U .p� I �/ exists, it

will coincide with lim
�!1S˝� .p� I �/.

We now demonstrate how the problem on boundary asymptotic behavior of the
Bergman curvature (generally considered difficult) can be converted to the problem
on the stability of the Bergman kernel function in the interior under perturbation of
the boundaries (which is generally easier). This is done by the scaling method, and
this conversion is the important, second component of the proof.

Theorem 7.3.3. Let the sequence f.p� I ��/ 2 ˝� � .Cn n f0g/g be chosen as above.
Let Bn denote the open unit ball in C

n. Then there exists a sequence of injective
holomorphic mappings �� W ˝� \ U ! C

n satisfying the following properties:

(i) ��.p�/ D 0 (the origin of Cn).
(ii) For every r > 0, there exists N > 0 such that

.1 	 r/Bn � ��.˝� \ U/ � .1C r/Bn

for every � > N .

The third component is the following theorem of Ramadanov [RAM1] (see also
Sect. 1.12). We treated this result in detail in Sect. 1.12.

Theorem 7.3.4. Let D be a bounded domain in C
n containing the origin 0. Let

D� denote a sequence of bounded domains in C
n that satisfies the following

convergence condition:

Given � > 0, there exists N > 0 such that

.1� �/D � D� � .1C �/D

for every � > N .

Then, for every compact subset F of D, the sequence of Bergman kernel functions
KD� ofD� converges uniformly to the Bergman kernel functionKD ofD on F �F .

7.3.2 The Bergman Metric near Strictly Pseudoconvex
Boundary Points

As an application of the ideas introduced by far, we will now deduce the boundary
behavior estimate for the Bergman metric of a bounded, C2-smooth strictly
pseudoconvex domain, establishing the completeness of the Bergman metric there.

Let ˝ be a bounded domain in C
n with C2 smooth, strictly pseudoconvex

boundary. Let v 2 C n f0g. Then, for any p 2 ˝, the Bergman metric length kvk˝;p
at p has the following representation by minimum integrals:
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kvk2˝;p D 1

I˝0 .p/I
˝
1 .pI v/

:

Note that this follows from the exposition in Sect. 3.1, where the Bergman’s special
orthonormal system for A2.˝/ was introduced.

Thus the usual localization arguments imply the following:
For any Op 2 @˝, any open neighborhood U of Op in C

n, and any positive constant
C > 1, there exists an open set V satisfying Op 2 V �� U such that

1

C
kvk2˝\U;p � kvk2˝;p � Ckvk2˝\U;p

for any p 2 V and any v 2 C
n.

This, together with the scaling method arguments, implies immediately the
following:

Let p be as above. Then let Qp 2 @˝ be the closest point to p. (Such a Qp is
uniquely determined if V is chosen sufficiently small.) Write v 2 C

n as

v D v0 C v00

so that v0 is complex tangent to @˝ at Qp whereas v00 is complex normal. Then there
exists a constant C 0 > 0 such that

kvk2˝;p � C 0
� kv0k2

kp 	 Qpk C kv00k2
kp 	 Qpk2

�
;

where the norm k � k in the right-hand side is the Euclidean norm, which is in fact
the Bergman metric of the unit ball in C

n at the origin up to a constant multiple.
Notice that this in particular implies the completeness of the Bergman metric of

the bounded strictly pseudoconvex domains, which was used in the exposition of
Chap. 3.

Exercises

1. Use the scaling method to construct a proof of the Riemann mapping theorem
in one complex variable.

2. Use the scaling method to show that the Poisson kernel of a smoothly bounded
domain in the complex plane will satisfy

c
ı˝.x/

jx 	 yj2 � P˝.x; y/ � C
ı˝.x/

jx 	 yj2
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for positive constants c and C . Here ı˝.x/ is the distance of x 2 ˝ to the
boundary.

3. Let ˝ � C
2 have defining function

�.z1; z2/ D 	1C jz1j2 C jz2j2m C .terms that are order 2mC 2 or higher/

for m an integer greater than 1. Perform scaling near the boundary point .1; 0/.
What does the limit domain look like?

4. Perform scaling on the bidisc near the boundary point .1; 0/. What does the
limit domain look like? Do you have trouble with the convergence of the scaling
process?

5. Use the Fefferman’s asymptotic expansion to calculate an asymptotic formula
for the Bergman metric near a strictly pseudoconvex boundary point.

6. Generalize Exercise 2 to higher dimensions.
7. Why don’t we do scaling in the real variable context? What essential feature

would be missing?
8. Calculate the curvature of the Bergman metric on the bidisc.
9. Can you use scaling to get information about the Bergman metric near the

boundary point .1; 0/ of the domain

E D f.z1; z2/ W jz1j2 C jz2j4 < 1g ‹

10. What can you say about the curvature of the Bergman metric near the boundary
point .1; 0/ of the domain

E D f.z1; z2/ W jz1j2 C jz2j4 < 1g ‹
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APPENDIX: Scaling in Dimension One

The Scaling of the Unit Disc

Let D be the open unit disc in the complex plane C. Choose a sequence aj in D
satisfying the conditions

0 < aj < ajC1 < � � � < 1; 8j D 1; 2; : : : ;

and

lim
j!1 aj D 1:

Consider the sequence of dilations

Lj .z/ D 1

1 	 aj .z 	 1/:

Let us write �j D 1 	 aj . Then one sees immediately that

Lj .D/ D f� 2 C j .1C �j �/.1C �j N�/ < 1g
D f� 2 C j 2 Re � < 	�j j�j2g :

It follows that the sequence of sets Lj .D/ converges to the left half plane H D
f� 2 C j Re � < 0g in the sense that

Lj .D/ � LjC1.D/; 8j D 1; 2; : : : ;

and

1[
jD1

Lj .D/ D H:

[Compare the concept of convergence in the Hausdorff metric on sets—see [FED].]
Now we combine this simple observation with the fact that there exists the

sequence of maps

'j .z/ D z C aj

1C aj z
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that are automorphisms of D satisfying 'j .0/ D aj . Consider the sequence of
composite maps

�j � Lj ı 'j W D ! C:

A direct computation yields that

Lj ı 'j .z/ D 1

1 	 aj
�

z C aj

1C aj z
	 1

�

D z 	 1
1C aj z

:

Hence, in fact we see that the sequence of holomorphic mappings Lj ı'j converges
uniformly on compact subsets of D to the mapping

O�.z/ D z 	 1
z C 1

that is a biholomorphic mapping from the open unit disc D onto the left half plane
H . (We have in effect discovered here a means to see the Cayley map by way of
scaling.)

The point is that we have exploited the automorphism of the disc to see that
the disc is conformally equivalent to a certain canonical domain—namely, the half
plane. This result is neither surprising nor insightful. But it is a toy version of the
main results that we shall present below.

A Generalization

We now expand the simple observations of the preceding subsection to yield the
statement and the proof of the following one-dimensional version of the Wong–
Rosay theorem:

Proposition: Let ˝ be a domain in the complex plane C admitting a boundary
point p such that

(i) There exists an open neighborhood U of p in C such that U \@˝ is a C1 curve.
(ii) There exists a sequence 'j of automorphisms of ˝ and a point q 2 ˝ such

that

lim
j!1'j .q/ D p:

Then ˝ is biholomorphic to the open unit disc.
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i

0

fj(q)

pj

Tpj

j

Fig. 7.1 The scaling process

See [KRA13] for this theorem. We use this simple result to illustrate the
technique of scaling.

In order to be consistent with the remainder of this chapter, we change a bit
the notation for the orbit accumulation point and the point whose orbit we are
calculating. This will all make sense in context.

Sketch of the Proof: Let qj D 'j .q/ for each j . Choose the closest point in the
boundary to qj and call it pj . If the closest boundary point pj to qj is not unique,
then make a choice. As j tends to infinity, pj converges to p because qj converges
to p. Then we select �j and apply the map �j .z/ � ei�j .z 	 pj / so that

�j .pj / D 0 and �j .qj / > 0

for each j . Now consider the sequence of mappings

 j .z/ D 1

�j .qj /

	
�j ı 'j .z/



:

Notice that  j .˝/ D 1

�.qj /
�j .˝/ for each j . Thus we expect that  j .˝/ is

almost the right half plane as j becomes very large. At least every  j .˝/ is
contained in C n ` for some line segment ` of positive length and for every j . (Note
that ` can be chosen independently of j .) Therefore one can select a subsequence
from f j g that converges uniformly on compact subsets of ˝. Let O be the limit
mapping. Then we expect O W ˝ ! C to be an injective holomorphic mapping, and
furthermore, O .˝/ is equal to the right half plane. Thus we hope to conclude that
˝ is biholomorphic to the right half plane, which in turn is biholomorphic to the
open unit disc. See Fig. 7.1.
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This plan actually works, but it is evident that there are several points that need
clarification. We shall now present the precise proof, which will show much of the
essence of the scaling method.

Rigorous Proof of the Main Result: Keeping the “Plan of the Proof” in mind, we
present the precise proof in several steps. Let p 2 @˝ be as in the hypothesis of
the proposition. Write D.p; r/ D fz 2 C j jz 	 pj < rg. Transforming ˝ by a
conformal mapping z 7! ei˛.z 	 p/, we may assume the following with no loss of
generality:

(a) p D 0

(b) ˝ \D.p; r/ D fz D x C iy j y >  .x/; jz 	 pj < rg and @˝ \D.p; r/ D
fz j y D  .x/; jz	pj < rg for a real-valued C1 function  in one real variable
satisfying  .0/ D 0 and  0.0/ D 0.

Step 1. THE SCALING MAP. Notice that the sequence 'j .q/ now converges to 0 as
j ! 1. For each j , we choose a point pj 2 @˝ that is the closest to 'j .q/. Since
pj also converges to 0, replacing 'j by a subsequence if necessary, we may assume
that every pj 2 D.p; r=4/. Now, for each j , set

˛j .z/ D i
j'j .q/ 	 pj j
'j .q/ 	 pj .z 	 pj /:

Notice that 'j .q/	pj is a positive scalar multiple of the inward unit normal vector

to @˝ at pj . Thus
'j .q/ 	 pj

j'j .q/ 	 pj j converges to the inward unit normal vector to @˝

at 0. This implies that ˛j in fact converges to the identity map. Consequently, there
exist positive constants r1; r2 independent of j such that, for each j , there exists a
C1 function  j .x/ defined for jxj < r1 satisfying

˛j .z/ \ .Œ	r1; r1
 � Œ	r2; r2
/ D fx C iy j jxj < r1; jyj < r2; y >  j .x/g:

Furthermore, for each � > 0, there exists ı > 0 such that

 j .x/ < �jxj whenever jxj < ı

regardless of j .

Next, let �j D j'j .q/ 	 pj j for each j . Consider the dilation map

Lj .z/ D z

�j
:

Then the sequence of holomorphic mappings we want to construct is given by

 j � Lj ı ˛j ı 'j W ˝ ! C:
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Before starting the next step, we make a few remarks. The automorphism 'j
preserves the domain ˝ but moves q to 'j .q/ so that 'j .q/ converges to the
origin—recall that we made changes so that p became the origin at the beginning
of the proof. Then the affine map ˛j adjusts ˝ so that the direction vector
'j .q/ 	 pj

j'j .q/ 	 pj j is transformed to a purely imaginary number. The final component

Lj in the construction simply magnifies the domain ˛j .˝/, while the map Lj itself
diverges.

Step 2. CONVERGENCE OF THE  j . We shall actually choose a subsequence from
f j g that converges uniformly on compact subsets of ˝. Observe first that

 j .˝/ D Lj ı ˛j ı 'j .˝/ D Lj ı ˛j .˝/

since 'j .˝/ D ˝. Choosing a subsequence of  j , we may assume that �j < 1 for
every j . Then, since Lj is a simple dilation by a positive number, and since ˛j .˝/
will miss a line segment

E D f	iy j 0 � y � bg

for some constant b independent of j , we see immediately that

 j .˝/ � C nE

for every j D 1; 2; : : :. Therefore Montel’s theorem implies that every subsequence
of f j g admits a subsequence, which we again (by an abuse of notation) denote by
 j , that converges uniformly on compact subsets of ˝. Denote by O the limit of
the sequence  j .

Step 3. ANALYSIS OF O .˝/. We want to establish that

O .˝/ D U ;

where U � fz 2 C j Im z > 0g.

Let � be a positive real number and let K an arbitrary compact subset of ˝. We
will show that O .K/ � C� , where C� � fz 2 CW 	� < arg z < � C �g.

Choose R > 0 such that O .K/ is contained in the disc D.0;R/ of radius R
centered at 0.

The sequence 'j W ˝ ! ˝ is a normal family since C n ˝ contains a line
segment with positive length. Every subsequence of 'j contains a subsequence that
converges uniformly on compact subsets, since 'j .q/ converges to p. Let g W ˝ !
˝ be a subsequential limit map. Then g.q/ D p. Recall that p 2 @˝. Hence, the
open mapping theorem yields that g.z/ D p for every z 2 ˝. Thus the sequence
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'j itself converges uniformly on compact subsets to the constant map with value
p. Therefore we may choose N > 0 such that 'j .K/ is contained in a sufficiently
small neighborhood of the origin for every j > N , and hence ˛j ı 'j .K/ � C� for
every j > N . Then it follows immediately that  j .K/ � C� for every j > N and
consequently that

O .K/ � C�:

Since K is an arbitrary compact subset of ˝, it follows that O .˝/ � U . We
also have O .q/ D i , since  j .q/ D Lj ı ˛j ı 'j .q/ D i for every j D 1; 2; : : :.
Therefore O .˝/ � U .

Step 4. CONVERGENCE OF  �1
j . Let QK be an arbitrary compact subset of the upper

half plane U . Then choose � > 0 so that QK � C� . Choose then r > 0 such that

D.0; r/ \ C� � ˝ \D.0; r/:
Shrinking r > 0 if necessary, since ˛j converges to the identity map uniformly on
compact subsets of C, there exists N > 0 such that

D.0; r/ \ C� � ˛j .˝/ \D.0; r/
for every j > N . Hence, we see that  �1

j maps K into ˝. Since ˝ � C n E as
observed before, we may again choose a subsequence of  j , which we again denote
by  j , so that  �1

j converges to a holomorphic map, say � W U ! ˝. Since � is
holomorphic and �.i/ D q, we see that � maps the upper half plane U into ˝.

Step 5. SYNTHESIS. We are ready to complete the proof. By the Cauchy estimates,
the derivatives d j of j as well as the derivatives dŒ �1

j 
 both converge. Therefore

d O .q/ � d O�.i/ D 1. This means that O ı � W U ! U is a holomorphic mapping
satisfying O ı �.i/ D i and . O ı �/0.i/ D 1. Then, by the Schwarz’s lemma, one
concludes that O ı � D id, where id is the identity mapping. Likewise, the same
reasoning applied to � ı O W ˝ ! ˝ implies that � ı O D id. So O W ˝ ! U is a
biholomorphic mapping.

Remark: The sequence of mappings  j constructed above is often called a scaling
sequence. It is constructed from a composition of

(1) The automorphisms carrying one fixed interior point successively to a boundary
point

(2) Certain affine adjustments
(3) The stretching dilation map

The proof given above is a good example of the scaling technique. The main thrust of
the method is that the image of the limit mapping is determined solely by the affine
adjustments and the dilations, while the scaling sequence converges to a conformal
mapping.
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Remark: As observed earlier, the main result here can be proved in a much simpler
way. Namely, one may conclude immediately from the argument on the shrinking
of 'j .K/ into a simply connected subset of ˝ that ˝ must be simply connected.
Then the conclusion follows by the Riemann mapping theorem. But we are trying to
skirt around the Riemann mapping theorem. The goal of this argument is to provide
a basis for the scaling method which can be applied to the higher-dimensional
cases.



Chapter 8
Concluding Remarks

We have endeavored in this book to give the reader a look at the ever-evolving
Bergman theory. Some of the results here are 90 years old, and others were proved
quite recently.

The Bergman’s ideas have proved to be remarkably robust and fruitful. They
continue to yield new techniques and new paths for research. They have played a key
role in the development of complex geometry and of partial differential equations
in one and several complex variables, in complex function theory, and in extremal
problems. The biholomorphic invariance of the Bergman kernel and metric has
proved to be particularly important.

We have with pleasure presented the ideas connected with the Bergman represen-
tative coordinates. This is a much underappreciated aspect of the Bergman theory,
and one that deserves further development. The proof of the Lu Qi-Keng’s theorem
serves to illustrate what a powerful idea it is. It also played a decisive role in the
original proof of the Greene–Krantz semicontinuity theorem.

Fefferman’s work on biholomorphic mappings of strictly pseudoconvex domains
gives yet another illustration of the centrality and power of the Stefan Bergman’s
ideas. The Fefferman’s asymptotic expansion has proved to be one of the central
ideas in the modern function theory of several complex variables.

The work of Greene and Krantz has also served to illustrate the geometric force
of the Bergman kernel and Bergman metric. Krantz and Li, and Kim and Krantz,
have developed these ideas even further.

We look forward to many years of future activity in the Bergman geometric
theory and the Bergman function theory.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6 8,
© Springer Science+Business Media New York 2013
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Notation Section Definition
H2.�/ 1.2 The square-integrable Hardy space
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K.x; y/ 1.3 A reproducing kernel
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C 1.7 The nonnegative integers
A 1.8 An annulus
d� 1.9 Area measure on the boundary of the ball
W s 1.11 The Sobolev space
Uk� .�0/ 2.1 Domains neighboring �0

� 2.1 Is biholomorphic to
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@
�

2.1 The adjoint of @
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W
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0 .�/ 2.1 The W j closure of C1
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@=@�P 2.1 The outward normal derivative at P
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@b 3.3 The boundary Cauchy–Riemann operator
B.z; �/ 3.3 The Poisson–Bergman kernel
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L 3.5 Laplace–Beltrami operator
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Pk 4.1 All homogeneous polynomials of degree k
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Hk 4.1 The spherical harmonics
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.k/

x0 4.2 Zonal harmonic
P.x; t 0/ 4.2 The Poisson kernel
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k .t/ 4.2 Gegenbauer polynomial

Hp;q 4.3 Harmonic polynomials of bidegree .p; q/
Q.f; g/ 4.4 Cauchy–Riemann inner product
ŒL;M
 5.3 First-order commutator
v.�/ 5.3 The order of vanishing of �
H 5.7 Hausdorff distance on domains
A2.M/ 5.9 The Bergman space on a manifold
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W 6.1 The Diederich–Fornæss worm domain
� 6.1 Function used to construct the worm
A 6.2 Singular annulus in the worm
BK
� .q; r/ 7.2 Kobayashi distance ball

S�.pI �/ 7.3 Holomorphic sectional curvature



Bibliography

[ADA] R. Adams, Sobolev Spaces, Academic Press, 1975.
[AFR] P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, Jour.

Functional Analysis 11(1993), 380–397.
[AHL] L. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.
[ARO] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68(1950),

337–404.
[BEG] T. N. Bailey, M. G. Eastwood, and C. R. Graham, Invariant theory for conformal and

CR geometry, Annals of Math. 139(1994), 491–552.
[BAR1] D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in

C
2; Annals of Math. 119(1984), 431–436.

[BAR2] D. Barrett, The behavior of the Bergman projection on the Diederich–Fornaess worm,
Acta Math., 168(1992), 1–10.

[BAR3] D. Barrett, Regularity of the Bergman projection and local geometry of domains,
Duke Math. Jour. 53(1986), 333–343.

[BAR4] D. Barrett, Behavior of the Bergman projection on the Diederich–Fornæss worm, Acta
Math. 168(1992), 1–10.

[BEDF] E. Bedford and P. Federbush, Pluriharmonic boundary values, Tohoku Math. Jour.
26(1974), 505–511.

[BEF1] E. Bedford and J. E. Fornæss, A construction of peak functions on weakly pseudo-
convex domains, Ann. Math. 107(1978), 555–568.

[BEF2] E. Bedford and J. E. Fornæss, Counterexamples to regularity for the complex Monge–
Ampère equation, Invent. Math. 50 (1978/79), 129–134.

[BEL1] S. Bell, Biholomorphic mappings and the @ problem, Ann. Math., 114(1981), 103–
113.

[BEL2] S. Bell, Local boundary behavior of proper holomorphic mappings, Proc. Sympos.
Pure Math, vol. 41, American Math. Soc., Providence R.I., 1984, 1–7.

[BEL3] S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z.
192(1986), 467–472.

[BEB] S. Bell and H. Boas, Regularity of the Bergman projection in weakly pseudoconvex
domains, Math. Annalen 257(1981), 23–30.

[BEC] S. Bell and D. Catlin, Proper holomorphic mappings extend smoothly to the boundary,
Bull. Amer. Math. Soc. (N.S.) 7(1982), 269–272.

[BEK] S. Bell and S. G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mt.
Jour. Math. 17(1987), 23–40.

[BELL] S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on
biholomorphic mappings, Invent. Math. 57(1980), 283–289.

S.G. Krantz, Geometric Analysis of the Bergman Kernel and Metric,
Graduate Texts in Mathematics 268, DOI 10.1007/978-1-4614-7924-6,
© Springer Science+Business Media New York 2013

277



278 Bibliography

[BERE] F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izvestia
9(1975), 341–379.
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[HOR2] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, New York,

1963.
[HOR3] L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems,

Ann. Math. 83(1966), 129–209.
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Poincaré metric on the disc, 18
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